26 minute read
Fellow of the Royal College of Organists, Eng.; First Mus. Bac., Dunelm.; Organist of Christ Church, Pelham Manor, N. Y.; late of All Angels', New York; St. Clement's, Philadelphia, and Wallasey Parish Church, England...
4 minute read
Some years ago the elders and deacons of a Scotch church were assembled in solemn conclave to discuss the prospective installation of a pipe organ. The table was piled high with plans and specifications and discussion ran rife as to whether they should have a two-manual or a three-manual instrument—a Great and Swell or a Great, Swell, and Choir organ. At last Deacon MacNab, the church treasurer and a personage of importance, got a chance to speak. "Mr. Chairman," said he, "I don't see why we should have a Great, a Swell, and a Choir organ. I think that one organ is quite enough." Now, Deacon MacNab was a master tailor, and a good one at that; so the musical man who was pushing the thing through appealed to his professional instincts in explaining the situation by saying: "Surely, Mr. MacNab, you would not say that a man was properly...
2 minute read
"The Organ breathes its deep-voiced solemn notes, The people join and sing, in pious hymns And psalms devout; harmoniously attun'd, The Choral voices blend; the long-drawn aisles At every close the ling'ring strains prolong: And now, of varied tubes and reedy pipes, The skilful hand a soften'd stop controuls: In sweetest harmony the dulcet strains steal forth, Now swelling high, and now subdued; afar they float In lengthened whispers melting into cadenced murmurs, Forming soft melodious strains, and placid airs, Spreading gently all around, then soaring up to Heav'n!" — Dryden . The origin of the pipe organ is lost in the mists of antiquity. Tradition hath it that there was one in Solomon's Temple at Jerusalem, the sound of which could be heard at the Mount of Olives. It has the honor of being the first wind instrument mentioned in the Bible (Genesis iv, 21), where we are told...
3 minute read
On the other hand we have the syrinx or Pan's-pipes. Stainer says this was undoubtedly the precursor of the organ. "It was formed of seven, eight or nine short hollow reeds, fixed together by wax, and cut in graduated lengths so as to produce a musical scale. The lower ends of the reeds were closed and the upper open and on a level, so that the mouth could easily pass from one pipe to another." This is the instrument used at the present day by the Punch and Judy man. He wears it fastened around his throat, turning his head from side to side as he blows, while with his hands he beats a drum. The next step would be to combine a set of flutes or shepherd's pipes with the wind reservoir of the bagpipes, placing a little slider under the mouthpiece of each pipe which could be opened...
3 minute read
Before proceeding further we propose to give a brief description of the construction of the organ at the beginning of the last century and explain the technical terms we shall use later. As everybody knows, the tone comes from the pipes, some of which are to be seen in the front of the instrument. The pipes are of various shapes and sizes and are arranged in ranks or rows upon the wind-chest . Each of these ranks is called a stop or register . It should be borne in mind that this word stop refers to the row of pipes, and not to the stop-knobs by the keyboard which operate the mechanism bringing the row of pipes into play. Much confusion of ideas prevails on this point, and cheap builders used to take advantage of it by providing two stop-knobs for each row of pipes, thereby making their instruments appear...
1 minute read
The spring S (Fig. 2) keeps the pallet C against the opening into D. The wires called pull-downs (P, P, P), which pass through small holes in the bottom of the wind-chest and are in connection with the keyboard, are attached to a loop of wire called the pallet-eye , fastened to the movable end of the pallet. A piece of wire is placed on each side of every pallet to steady it and keep it in the perpendicular during its ascent and descent, and every pallet is covered at top with soft leather, to make it fit closely and work quietly. When P is pulled down (Fig. 1) the pallet C descends, and air from the wind-chest A rushes through D into the pipe over it. But the slider f is a narrow strip of wood, so placed between the woodwork g and h that it may be moved...
1 minute read
When the apertures in the slider are under those below the pipe, the "stop," the handle of which controls the position of the slider, is said to be out , or drawn . When the apertures do not correspond, the stop is said to be in . Thus it is that when no stops are drawn no sound is produced, even although the wind-chest be full of air and the keys played upon. This wind-chest with the slider stop control is about all that is left to us of the old form of key action. The pallets were connected to the keys by a series of levers, known as the tracker action. There were usually six joints or sources of friction, between the key and the pallet. To overcome this resistance and close the pallet required a strong spring. Inasmuch as it would never do to put all the large...
1 minute read
Just as we no longer see four men tugging at the steering wheel of an ocean steamer, the intervention of the steam steering gear rendering the use of so much physical force unnecessary, so it now occurred to an organ-builder in the city of Bath, England, named Charles Spachman Barker,[1] to enlist the force of the organ wind itself to overcome the resistance of the pallets in the wind-chest. This contrivance is known as the pneumatic lever , and consists of a toy bellows about nine inches long, inserted in the middle of the key action. The exertion of depressing the key is now reduced to the small amount of force required to open a valve, half an inch in width, which admits wind to the bellows. The bellows, being expanded by the wind, pulls down the pallet in the wind-chest; the bellows does all the hard work. The drawing...
2 minute read
The organ touch could now be made as light as that of a pianoforte, much lighter than ever before. This epoch-making invention, introduced in 1832, rendered possible extraordinary developments. It was at first strangely ignored and opposed. The English organ-builders refused to take it up. Barker was at length driven to France, where, in the person of Aristide Cavaillé-Coll, he found a more far-seeing man. After Cavaillé-Coll had fully demonstrated the practical value of Barker's invention, Willis and others joined in its development, and they contemporaneously overcame all difficulties and brought the pneumatic action into general favor. This process, of course, took time, and up to about fifty years ago pneumatic action was found only in a few organs of large calibre. The recent revolution in organ building and in organ tone, of which this book treats, was founded upon the pneumatic and electro-pneumatic actions invented by Barker.[2] It is...
2 minute read
[1] The invention of the pneumatic lever has been claimed for Mr. Hamilton, of Edinburgh, Scotland. It is, however, generally credited to Barker and known as the "Barker pneumatic lever." (See also note about Joseph Booth, page 129.) [2] Barker was also associated with Péschard, who in 1864 patented jointly with him the electro-pneumatic action. (See page 37.) [3] The pressure of the wind supplied by the old horizontal bellows is regulated by the weights placed on top. The amount of this pressure is measured by a wind-gauge or anemometer invented by Christian Förmer about 1677. It is a bent glass tube, double U shaped, into which a little water is poured. On placing one end of it fitted with a socket into one of the holes in the wind-chest (in place of a pipe) and admitting the wind from the bellows the water is forced up the tube, and...
42 minute read
In the year 1845, Prosper-Antoine Moitessier, an organ-builder of Montpellier, France, patented what he called " abrégé pneumatique ," an organ action in which all back-falls and rollers were replaced by tubes operated by exhaust air. In 1850 he built with this action an organ of 42 speaking stops for the church of Notre Dame de la Dalbade at Toulouse. This organ lasted 33 years. In 1866 Fermis, schoolmaster and village organist of Hanterire, near Toulouse, improved on Moitessier's action by combining tubes conveying compressed air with the Barker lever. An organ was built on this system for the Paris Exhibition of 1867, which came under the notice of Henry Willis, by which he was so struck that he was stimulated to experiment and develop his action, which culminated in the St. Paul's organ in 1872. (From article by Dr. Gabriel Bédart in Musical Opinion, London, July, 1908.)...
31 minute read
Undoubtedly the first improvements to be named must be the pneumatic and electro-pneumatic actions. Without the use of these actions most of the advances we are about to chronicle would not have been effected. As before stated, Cavaillé-Coll and Willis worked as pioneers in perfecting and in introducing the pneumatic action. The pneumatic action used by Willis, Cavaillé-Coll and a score of other builders leaves little to be desired. It is thoroughly reliable and, where the keys are located close by the organ, is fairly prompt both in attack and repetition. Many of the pneumatic actions made to-day, however, are disappointing in these particulars....
2 minute read
In the year 1872 Henry Willis built an organ for St. Paul's Cathedral, London, which was divided in two portions, one on each side of the junction of the Choir with the Dome at an elevation of about thirty feet from the floor. The keyboards were placed inside one portion of the instrument, and instead of carrying trackers down and under the floor and up to the other side, as had hitherto been the custom in such cases, he made the connection by means of tubes like gaspipes, and made a pulse of wind travel down and across and up and into the pneumatic levers controlling the pipes and stops. Sir John Stainer describes it as "a triumph of mechanical skill." He was organist of St. Paul's for many years and ought to know. This was all very well for a cathedral, where ". . . . the long-drawn aisles The melodious strains...
1 minute read
The tubes, N, from each key are fixed to the hole connected to the small puffs P in the puff-board E. Air under pressure is admitted by the key action and conveyed by the tubes N which raises the corresponding button valves S 1 , lifting their spindles S and closing the apertures T 2 in the bottom of the wind-chest A, and opening a similar aperture T in the bottom of the cover-board F, causing the compressed air to escape from the exhaust bellows M, which closes, raising the solid valve H in the cover-board F and closing the aperture J 1 in the wind-chest A, shuts off the air from the bellows, which immediately closes, drawing down the pallet B, which admits air (or wind) to the pipes. No tubular-pneumatic action is entirely satisfactory when the distance between the keys and the organ is great. This is often...
2 minute read
The instance of St. Paul's Cathedral cited above shows the demand that existed at that time for means whereby the organ could be played with the keyboards situated at some distance from the main body of the instrument. In the Cathedrals the organ was usually placed on a screen dividing the Choir from the Nave, completely obstructing the view down the church. There was a demand for its removal from this position (which was eventually done at St. Paul's, Chester, Durham, and other Cathedrals). Then in the large parish churches the quartet of singers in the west gallery where the organ was placed had been abolished. Boy choirs had been installed in the chancel, leaving the organ and organist in the west gallery, to keep time together as best they could. In the Cathedrals, too, the organist was a long way off from the choir. How glorious it would be...
51 minute read
This form of mechanism, therefore, earned a bad name and was making little advance, if not actually being abandoned, when a skilled electrician, Robert Hope-Jones, entered the field about 1886. Knowing little of organs and nothing of previous attempts to utilize electricity for this service, he made with his own hands and some unskilled assistance furnished by members of his voluntary choir, the first movable console,[4] stop-keys, double touch, suitable bass, etc., and an electric action that created a sensation throughout the organ world. In this action the "pneumatic blow" was for the first time attained and an attack and repetition secured in advance of anything thought possible at that time, in connection with the organ or the pianoforte. Hope-Jones introduced the round wire contact which secures the ideally perfect "nibbing points," and he makes these wires of dissimilar non-corrosive metals (gold and platinum). He replaced previous rule-of-thumb methods by...
1 minute read
The electric action consists substantially of a small bellows like the pneumatic lever, but instead of the valve admitting the wind to operate it being moved by a tracker leading from the key, it is opened by an electro-magnet, energized by a contact in the keyboard and connected therewith by a wire which, of course, may be of any desired length. We illustrate one form of action invented and used by Hope-Jones.[5] Within the organ, the wires from the other end of the cable are attached to small magnets specially wound so that no spark results when the electric contact at the key is broken. This magnet attracts a thin disc of iron about 1/4 inch in diameter, (held up by a high wind pressure from underneath) and draws it downward through a space of less than 1/100 of an inch. The working is as follows: The box A is...
52 minute read
When a weak current of electricity is caused to circulate round the coils of the electro-magnet N, the small armature disc J is drawn off the valve-seat H on to the zinc plate K. The compressed air from within the small motor M escapes by way of the passage L, through the openings in the valve seat H into the atmosphere. The compressed air in the box A then acts upon the movable portion of the small motor M in such a manner that it is forced upwards and caused (through the medium of the pull-wire E) to lift the supply pallet C 1 and close the exhaust pallet C 2 , thus allowing compressed air to rush from the box A into the motor B and so cause this latter motor to open and (through the medium of the pull down P) to pull the soundboard pallet from its...
2 minute read
The valve-seat H has formed on its lower surface two crescent shaped long and narrow slits. A very slight movement of the armature disc J, therefore, suffices to open to the full extent two long exhaust passages. The movement of this disc is reduced to something less than the 1/100 part of an inch. It is, therefore, always very close to the poles of the magnet, consequently a very faint impulse of electricity will suffice (aided by gravity) to draw the disc off the valve-seat H. The zinc plate K being in intimate contact with the iron poles of the magnet N, protects the latter from rust by well-known electrical laws. All the parts are made of metal, so that no change in the weather can affect their relative positions. R is the point at which the large motor B is hinged. G is a spring retaining cap in position;...
1 minute read
Before the invention of pneumatic and electro-pneumatic action, organs were almost invariably constructed in a single mass. It was, it is true, possible to find instruments with tracker action that were divided and placed, say, half on either side of a chancel, but instances of the kind were rare and it was well nigh impossible for even a muscular organist to perform on such instruments. The perfecting of tubular pneumatic and especially of electro-pneumatic action has lent wonderful flexibility to the organ and has allowed of instruments being introduced in buildings where it would otherwise have been impossible to locate an organ. Almost all leading builders have done work of this kind, but the Aeolian Company has been quickest to seize the advantage of division in adapting the pipe organ for use in private residences. Sound reflectors have recently been introduced, and it seems likely that these will play an...
3 minute read
In the days of mechanical action, couplers of any kind proved a source of trouble and added greatly to the weight of the touch. The natural result was that anything further than unison coupling was seldom attempted. In some organs hardly any couplers at all were present. In Schulze's great and celebrated organ in Doncaster, England, it was not possible to couple any of the manuals to the pedals, and (if we remember rightly) there were only two couplers in the whole instrument. Shortly after the introduction of pneumatic action, an organ with an occasional octave coupler, that is a coupler which depressed a key an octave higher or lower than the one originally struck, was sometimes met with. In the pioneer organ built by Hope-Jones in Birkenhead, England (about 1887), a sudden advance was made. That organ contains no less than 19 couplers. Not only did he provide sub-octave...
33 minute read
Dr. Albert Péschard was born in 1836, qualified as an advocate (Docteur en droit), and from 1857 to 1875 was organist of the Church of St. Etienne, Caen, France. He commenced to experiment in electro-pneumatics in the year 1860, and early in 1861 communicated his discoveries to Mr. Barker. From that date until Barker left France, Péschard collaborated with him, reaping no pecuniary benefit therefrom. Péschard, however, was honored by being publicly awarded the Medal of Merit of the Netherlands; the Medal of Association Francaise pour l'Avancement de la Science; Gold Medal, Exhibition of Lyons; and the Gold Medal, Exhibition of Bordeaux. He died at Caen, December 23, 1903. (From Dr. Hinton's "Story of the Electric Organ.")...
39 minute read
On looking at the console of a modern organ the observer will be struck by the fact that the familiar draw-stop knobs have disappeared, or, if they are still there, he will most likely find in addition a row of ivory tablets, like dominoes, arranged over the upper manual. If the stop-knobs are all gone, he will find an extended row, perhaps two rows of these tablets. These are the stop-keys which, working on a centre, move either the sliders in the wind-chest, or bring the various couplers on manuals and pedals on or off....
28 minute read
We learn from Dr. Bédart that as early as 1804 an arrangement suggestive of the stop-key was in use in Avignon Cathedral. William Horatio Clarke, of Reading, Mass., applied for a patent covering a form of stop-key in 1877. Hope-Jones, however, is generally credited with introducing the first practical stop-keys. He invented the forms most largely used to-day, and led their adoption in England, in this country, and indeed throughout the world....
28 minute read
Our illustration (Fig. 8) gives a good idea of the appearance of a modern Hope-Jones console. The stop-keys will be seen arranged in an inclined semi-circle overhanging and just above the keyboards. Fig. 9 shows a console on the Bennett system. Figs. 10 and 11, hybrids, the tilting tablet form of stop-keys being used for the couplers only....
18 minute read
There is much controversy as to whether stop-keys will eventually displace the older fashioned draw-knobs....
33 minute read
A few organists of eminence, notably Edwin H. Lemare, are strongly opposed to the new method of control, but the majority, especially the rising generation of organists, warmly welcome the change. It is significant that whereas Hope-Jones was for years the only advocate of the system, four or five of the builders in this country, and a dozen foreign organ-builders, are now supplying stop-keys either exclusively or for a considerable number of their organs. Austin, Skinner, Norman & Beard, Ingram and others use the Hope-Jones pattern, but Haskell, Bennett, Hele and others have patterns of their own. It is a matter of regret that some one pattern has not been agreed on by all the builders concerned.[1]...
2 minute read
In older days all stop-keys were moved by hand, and as a natural consequence few changes in registration could be made during performance. Pedals for throwing out various combinations of stops were introduced into organs about 1809; it is generally believed that J. C. Bishop was the inventor of this contrivance. Willis introduced into his organs pneumatic thumb-pistons about the year 1851. These pistons were placed below the keyboard whose stops they affected. T. C. Lewis, of England, later introduced short key-touches arranged above the rear end of the keys of the manual. Depression of these key-touches brought different combinations of stops into use on the keyboard above which they were placed. Somewhat similar key-touches were used by the Hope-Jones Organ Co. and by the Austin Organ Co. Metal buttons or pistons located on the toe piece of the pedal-board were introduced by the ingenious Casavant of Canada. They are...
2 minute read
Pedal boards had always been made flat with straight keys until Willis and the great organist, Dr. S. S. Wesley, devised the radiating and concave board whereby all the pedal keys were brought within equal distance of the player's feet. This was introduced in the organ in St. George's Hall, Liverpool, in 1855, and Willis has refused to supply any other type of board with his organs ever since. Curiously enough, the advantages of this board were not appreciated by many players who preferred the old type of board and at a conference called by the Royal College of Organists in 1890 it was decided to officially recommend a board which was concave, but had parallel keys. The following letter to the author shows that the R. C. O. has experienced a change of heart in this matter: THE ROYAL COLLEGE OF ORGANISTS. LONDON, S. W., 27th May, 1909. Dear...
5 minute read
For a long time no means whatever of controlling the Pedal stops and couplers was provided, but in course of time it became the fashion to cause the combination pedals or pistons on the Great organ (and subsequently on the other departments also) to move the Pedal stops and couplers so as to provide a bass suited to the particular combination of stops in use on the manual. This was a crude arrangement and often proved more of a hindrance than of a help to the player. Unfortunately, unprogressive builders are still adhering to this inartistic plan. It frequently leads to a player upsetting his Pedal combination when he has no desire to do so. It becomes impossible to use the combination pedals without disturbing the stops and couplers of the Pedal department. The great English organist, W. T. Best, in speaking of this, instanced a well-known organ piece, Rinck's...
57 minute read
To most organs in this country, to many in Germany, and to a few in other countries, there is attached a balanced shoe pedal by movement of which the various stops and couplers in the organ are brought into action in due sequence. By this means an organist is enabled to build up the tone of his organ from the softest to the loudest without having to touch a single stop-knob, coupler or combination piston. The crescendo pedal, as it is called, is little used in England. It is the fashion there to regard it merely as a device to help an incompetent organist. It is contended that a crescendo pedal is most inartistic, as it is certain to be throwing on or taking off stops in the middle, instead of at the beginning or end of a musical phrase. In spite of this acknowledged defect, many of the best...
1 minute read
Under the name of Sforzando Coupler, the mechanism of which is described and illustrated in Stainer's Dictionary, a device was formerly found in some organs by which the keys of the Swell were caused to act upon the keys of the Great. The coupler being brought on and off by a pedal, sforzando effects could be produced, or the first beat in cadi measure strongly accented in the style of the orchestration of the great masters. Hope-Jones in his pioneer organ at St. John's Church, Birkenhead, England, provided a pedal which brought the Tuba on the Great organ. The pedal was thrown back by a spring on being released from the pressure of the foot. Some fine effects could be produced by this, but of course the whole keyboard was affected and only chords could be played. Various complicated devices to bring out a melody have been invented from time...
2 minute read
At the commencement of the period of which we are treating (some fifty years ago) the Swell shutters of almost all organs were made to fall shut of their own weight, or by means of a spring. The organist might leave his Swell-box shut or, by means of a catch on the pedal, hitch it full open. When, however, he wanted the shutters in any intermediate position, he had to keep his foot on the pedal in order to prevent its closing. The introduction of the balanced Swell pedal (Walcker, 1863) has greatly increased the tonal resources of the organ. It is used almost universally in this country, but strangely enough the country in which the Swell-box was invented (England, 1712) lags behind, and even to-day largely adheres to the old forms of spring pedal. A further and great step in advance appears in recent organs built by the Hope-Jones...
3 minute read
The invention of the Swell is generally attributed to Abraham Jordan. He exhibited what was known as the nag's head Swell in St. Magnus' Church, London, England, in the year 1731. The "nag's head" Swell, with its great sliding shutter, rapidly gave place to the "Venetian" Swell shades, used almost universally to this day. At the beginning of the period under consideration Swell boxes were almost invariably made of thin boards and their effect upon the strength of the tone was small. Willis was one of the first to realize the artistic possibilities of the Swell organ and in almost all his organs we find thick wooden boxes and carefully fitted shutters, and often an inner swell box containing the delicate reeds, such as the Vox Humana and Oboe. Many of the leading organ builders now employ this thicker construction, and it is no uncommon thing to find Swell boxes...
49 minute read
This plan illustrates the principle of the sound trap joint. Figure 13 shows in section the joint between two Swell shutters. A small proportion of the sound waves from inside the Swell box striking the sound trap joint, as indicated by the arrow, will pass through the nick between the two shutters, but these sound waves will become greatly weakened in charging the groove A. Such of the sound waves is pass through the second nick will become attenuated in charging the chamber B. They will be further lost in the chamber C, and practically none will remain by the time the chamber D is reached. It is Hope-Jones' habit to place the shutters immediately above the pipes themselves, so that when they are opened the Swell box is left practically without any top. It is in such cases not his custom to fit any shutters in the side or...
1 minute read
To relieve the compression of the air caused by playing for any length of time with the shutters closed, he provides escape valves, opening outside the auditorium. He also provides fans for driving all the cold air out of the box before using the organ, thus equalizing the temperature with the air outside—or he accomplishes this result through the medium of gas, electric or steam heaters, governed by thermostats. The Hope-Jones Vacuum Swell Shutters, with sound-trap joints, are shown in Figures 14 and 15. It is well known that sound requires some medium to carry it. Readers will doubtless be familiar with the well-known experiment illustrating this point. An electric bell is placed under a glass dome. So long as the dome is filled with air the sound of the bell can be heard, but directly the air is pumped out silence results, even though it can be seen that...
42 minute read
They are very light and can therefore be opened and closed with great rapidity. A very thin vacuum shutter forms a better interrupter of sound waves than a brick wall two or three feet in thickness. When partially exhausted the aluminum shutters are dipped into a bath of shellac. This effectually closes any microscopic blow-hole that may exist in the metal. The use of Swell boxes of this vastly increased efficiency permits the employment of larger scales and heavier pressures for the pipes than could otherwise be used, and enormously increases the tonal flexibility of the organ. It also does away with the need for soft stops in an organ, thus securing considerable economy. Where all the stops are inclosed in cement chambers (as in the case of recent Hope-Jones organs) and where the sound-trap shutters are employed, every stop is potentially a soft stop....
32 minute read
Prior to the construction of the above-named organ at Birkenhead, England, it had been the custom to obtain or regulate the pressure of wind supplied to the pipes by means of loading the bellows with weights. Owing to its inertia, no heavy bellows weight can be set into motion rapidly. When, therefore, a staccato chord was struck on one of these earlier organs, with all its stops drawn, little or no response was obtained from the pipes, because the wind-chest was instantly exhausted and no time was allowed for the inert bellows weights to fall and so force a fresh supply of air into the wind-chests....
59 minute read
In one of Hope-Jones' earliest patents the weights indeed remain, but they merely serve to compress springs, which in turn, act upon the top of the bellows. Before this patent was granted he had, however, given up the use of weights altogether and relied entirely upon springs. This one detail—the substitution of springs for weights—has had a far-reaching effect upon organ music. It rendered possible the entire removal of the old unsteadiness of wind from which all organs of the time suffered in greater or less degree. It quickened the attack of the action and the speech of the pipes to an amazing extent and opened a new and wider field to the King of Instruments. In the year 1894 John Turnell Austin, now of Hartford, Conn., took out a patent for an arrangement known as the "Universal air-chest." In this, the spring as opposed to the weight is adopted....
1 minute read
Fifty years ago the pallet and slider sound-board was well nigh universally used, but several of the builders in Germany, and Roosevelt in this country, strongly advocated, and introduced, chests having an independent valve, pallet or membrane, to control the admission of wind to each pipe in the organ.[1] In almost all of these instances small round valves were used for this purpose. A good pallet and slider chest is difficult to make, and those constructed by indifferent workmen out of indifferent lumber will cause trouble through "running"—that is, leakage of wind from one pipe to another. In poor chests of this description the slides are apt to stick when the atmosphere is excessively damp, and to become too loose on days when little or no humidity is present. Individual pallet chests are cheaper to make and they have none of the defects named above. Most of these chests, however,...
2 minute read
As previously stated, the vast majority of organs built fifty years ago used no higher wind pressure than 3 inches. Hill, in 1833, placed a Tuba stop voiced on about 11 inches in an organ he built for Birmingham Town Hall (England), but the tone was so coarse and blatant that such stops were for years employed only in the case of very large buildings.[3] Cavaillé-Coll subsequently utilized slightly increased pressures for the trebles of his flue stops as well as for his larger reeds. As a pioneer he did excellent work in this direction. To Willis, however, must be attributed greater advance in the utilization of heavy pressures for reed work. He was the first to recognize that the advantage of heavy wind pressure for the reeds lay not merely in the increase of power, but also in the improvement of the quality of tone. Willis founded a new...
2 minute read
The "organ beater" of bygone days was invariably accompanied by the "organ pumper," often by several of them. There is a well-known story of how the man refused to blow any longer unless the organist said that " we had done very well to-day." The organ pumper's vocation is now almost entirely gone, especially in this country, although we know of organs in England which require four men "to blow the same" unto this day. When Willis built the great organ in St. George's Hall, Liverpool, in 1855, he installed an eight-horsepower steam engine to provide the wind supply. There is a six-horse steam engine in use in Chester Cathedral (installed 1876). Gas and petrol (gasoline) engines have been used extensively in England, providing a cheaper, but, with feeders, a less controllable, prime mover. By far the commonest source of power has been the water motor, as it was economical...
7 minute read
At the commencement of the period of which we are treating, the stops belonging to the Swell organ could be drawn on that keyboard only; similarly the stops on the Great, Choir and Pedal organs could be drawn only on their respective keyboards. It is now becoming more and more common to arrange for the transference of stops from one keyboard to another. If this plan be resorted to as an effort to make an insufficient number of stops suffice for a large building, it is bound to end in disappointment and cannot be too strongly condemned. On the other hand, if an organ-builder first provides a number stops that furnish sufficient variety of tonal quality and volume that is ample for the building in which the instrument is situated, and then arranges for the transference of a number of the stops to other manuals than their own, he will...
2 minute read
We now come to the department of the organ which will be of more interest to the listener, viz., the various organ tones. The general shape and construction of the pipes now in use, judging from the earliest drawings obtainable, have not changed for hundreds of years. The ancients were not wanting in ingenuity and we have pictures of many funny-looking pipes which were intended to imitate the growling of a bear (this stop was sometimes labeled Vox Humana!), the crowing of a cock, the call of the cuckoo, the song of the nightingale, and the twitter of the canary, the ends of these pipes being bent over and inserted in water, just as the player blows into a glass of water through a quill in a toy symphony. Then there was the Hummel, a device which caused two of the largest pipes in the organ to sound at once...
2 minute read
The harmonics of a pianoforte string can be easily demonstrated by the following experiment: Depress the "loud" pedal and strike any note in the bass a sharp blow. On listening intently, the 3d, 5th, and 8th (the common chord) of the note struck will be heard sounding all the way up for several octaves. In this case the other strings of the piano act as resonators , enabling the harmonics to be heard. Coming back to our Flute again and applying the knowledge we have gained to an organ pipe, we observe: 1. That the pitch of the sound depends on the length of the tube. 2. That the pitch of the sound also depends on the amount of wind pressure. From this last will be seen how important it is that the pressure of the wind in an organ should be steady and uniform. Otherwise the pipes will speak...
4 minute read
Referring to the illustration, it will be seen that the pipes are partly open and partly stopped, with a tuning slide in the centre. The builders write as follows: "The inserted tube, or complementing chamber, in the pipe is such in length as to complete the full length of the pipe. It is, as will be noted, smaller in scale than the outside pipe. The effect is to produce the vibration that would be obtained with a full-length pipe, and in no way does it interfere with the quality of tone. In fact, it assists the pipe materially in its speech. This is most noticeable in a pipe such as the 32-foot Open Diapason, which when made full length is quite likely to be slow in speech. With this arrangement the pipe takes its speech very readily and is no slower in taking its full speech than an ordinary 16-foot...
4 minute read
The pipes usually seen in the front of an organ belong to the Great organ Open Diapason, long regarded as the foundation tone of the instrument. The Open Diapason may vary in size (or scale) from 9 inches diameter at CC to 3 inches. The average size is about 6 inches. The Diapasons of the celebrated old organ-builders, Father Schmidt, Renatus Harris, Green, Snetzler and others, though small in power, were most musical in tone quality. Though sounding soft near the organ, the tone from these musical stops seems to suffer little loss when traveling to the end of quite a large building. About the year 1862 Schulze, in his celebrated organ at Doncaster, England, brought into prominence a new and much more brilliant and powerful Diapason. The mouths of the pipes were made very wide and they were more freely blown. Schulze's work was imitated by T. C. Lewis,...
42 minute read
The dull tone of the old Diapasons was due to the absence of the upper harmonics or partials. With the introduction of the Lutheran chorale and congregational singing it was found that the existing organs could not make themselves heard above the voices. But it was discovered empirically that by adding their harmonics artificially the organs could be brightened up and even made to overpower large bodies of singers. Hence the introduction of the Mixture stops (also called compound stops), which were compounded of several ranks of pipes. The simplest form was the Doublette sounding the 15th and 22nd (the double and treble octave) of the note struck. Other ranks added sounded the 12th, 19th, and so on, until it was possible to obtain not only the full common chord, but also some of the higher harmonics dissonant to this chord, from a single key....
2 minute read
Fifty years ago it was common to find the number of ranks of mixtures in an organ largely exceed the total number of foundation stops. Mixtures were inserted in the pedal departments of all large organs. Organists of the time do not seem to have objected and many of the leading players strongly opposed Hope-Jones when he came out as the champion of their abolition. These stops greatly excited the ire of Berlioz, who declaims against them in his celebrated work on orchestration. The tone of these old organs, when all the Mixture work is drawn, is well nigh ludicrous to modern ears, and it is hard to suppress a smile when reading the statements and arguments advanced in favor of the retention of Mixtures by well-known organists of the last generation. These mutation stops still have their place in large instruments, but it is no longer thought that they...
3 minute read
The chief developments in Flutes that have taken place during the period under consideration are the popularization of the double length, or "Harmonic," principle,[4] by Cavaillé-Coll, by William Thynne and others, and the introduction of large scale leather-lipped "Tibias" by Hope-Jones. Harmonic Flutes, of double length open pipes,[5] are now utilized by almost all organ builders. Speaking generally, the tone is pure and possesses considerable carrying power. Thynne, in his Zauber Flöte, introduced stopped pipes blown so as to produce their first harmonic (an interval of a twelfth from the ground tone). The tone is of quiet silvery beauty, but the stop does not seem to have been largely adopted by other builders. Perhaps the most beautiful stop of this kind produced by Thynne is the one in the remarkable organ in the home of Mr. J. Martin White, Balruddery, Dundee, Scotland. The Hope-Jones leathered Tibias have already effected a...
1 minute read
Under this head are grouped the stops which imitate the tones of such stringed instruments as the Viola, the Violoncello, the Double Bass, and more especially the old form of Violoncello, called the Viol di Gamba, which had six strings and was more nasal in tone. At the commencement of the period herein spoken of string-toned stops as we know them to-day scarcely existed. This family was practically represented by the Dulciana and by the old slow-speaking German Gamba. These Gambas were more like Diapasons than strings. Edmund Schulze made an advance and produced some Gambas and Violones which, though of robust and full-bodied type, were pleasant and musical in tone. They were at the time deemed capable of string-like effects. To William Thynne belongs the credit of a great step in advance. The string tones heard in the Michell and Thynne organ at the Liverpool, England, exhibition in 1886...
57 minute read
As remarked in our opening chapter, pipes with strips of cane or reeds in the mouthpiece are of great antiquity, being found side by side with the flutes in the Egyptian tombs. These reeds, as those used at the present day, were formed of the outer siliceous layer of a tall grass, Arundo donax , or sativa , which grows in Egypt and the south of Europe. They were frequently double, but the prototype of the reed organ-pipe is to be seen in the clarinet, where the reed is single and beats against the mouthpiece. Of course, an artificial mouthpiece has to be provided for our organ-pipe, but this is called the boot . See Figure 19, which shows the construction of a reed organ-pipe. A is the boot containing a tube called the eschallot B, partly cut away and the opening closed by a brass tongue C, which vibrates...
31 minute read
In the last half-century the art of reed voicing has been entirely revolutionized. Prior to the advent of Willis, organ reeds were poor, thin, buzzy things, with little or no grandeur of effect, and were most unmusical in quality. Testimony to the truth of this fact is to be found in old instruction books for organ students. It is there stated that reeds should never be used alone, but that a Stopped Diapason or other rank of flue pipes must always be drawn with them to improve the tone quality....
3 minute read
Willis created an entirely new school of reed voicing. He was the first to show that reeds could be made really beautiful and fit for use without help from flue stops. When he wanted power he obtained it by raising the pressure, in order that he might be able to afford still to restrain the tone and to consider only beauty of musical quality. He was the first to show that every trace of roughness and rattle could be obviated by imparting to the reed tongue exactly the right curve. He restrained too emphatic vibrations in the case of the larger reed tongues by affixing to them with small screws, weights made of brass. He quickly adopted the practice of using harmonic, or double-length tubes, for the treble notes, and secured a degree of power and brilliance never before dreamed possible. Willis gave up the open eschallot in favor of...
44 minute read
Builders who have not mastered the art of so curving their reed tongues that buzz and rattle are impossible have endeavored to obtain smoothness of tone by leathering the face of the eschallot. This pernicious practice has unfortunately obtained much headway in the United States and in Germany. It cannot be too strongly condemned, for its introduction robs the reeds of their characteristic virility of tone. Reeds that are leathered cannot be depended upon; atmospheric changes affect them and put them out of tune. The French school of reed voicing, led by Cavaillé-Coll, has produced several varieties that have become celebrated. Many French Orchestral reeds are refined and beautiful in quality and the larger Trumpets and Tubas, though assertive and blatant, are not unmusical. The French school, however, does not appear to be destined to exercise any great influence upon the art in this country. (For further information regarding reeds...
1 minute read
The writer is not aware who first introduced into the organ a rank of soft-toned pipes purposely tuned a trifle sharp or flat to the normal pitch of the organ, so as to cause a beat or wave in the tone. Fifty years ago such stops were sparingly used and many organists condemned their employment altogether. Stops of the kind were hardly ever found in small organs and the largest instruments seldom contained more than one. A great development in this direction has taken place and further advance seems to be immediate. Already most builders introduce a Celeste into their small organs and two or three into their larger instruments—whilst Hope-Jones' organs are planned with Vox Humana Celestes, Physharmonica Celestes, Kinura Celestes and even Mixture Celestes! Most modern Celestes are tuned sharp, the effect being more animated than if it were tuned flat; but the aggregate effect and general utility...
1 minute read
This class of stop is also now finding its way into organs more generally than heretofore. Resonating gongs giving, when skillfully used, effects closely resembling a harp have been introduced freely by the Aeolian Company in its house organs, and there seems no possible objection to such introduction. The tone is thoroughly musical and blends perfectly with the other registers. Under the name of "Chimes" these resonant gongs are now finding place in many Church and Concert organs. Tubular bells are also used in a similar capacity by all the leading organ-builders, The greatest development in this direction is found in the Hope-Jones Unit Orchestra. In these instruments fully one-third of the speaking stops rely on percussion for production of their tones. Even small instruments of this type have all got the following percussion stops: Chimes, Chrysoglott, Glockenspiel, Electric Bells (with resonators), Xylophone, and carefully-tuned Sleigh Bells—in addition to single...
1 minute read
The invention of the Diaphone by Hope-Jones in 1894 will some day be regarded as the most important step in advance hitherto achieved in the art of organ building. The existence of patents at present prevents general adoption of the invention and limits it to the instruments made by one particular builder. In addition to this the Diaphone takes so many forms and covers so large a field that time must necessarily pass before its full possibilities are realized. Enough was, however, done by Hope-Jones in connection with the organs he built in England a dozen or eighteen years ago to leave the experimental stage and prove the invention to be of the greatest practical importance to the future of organ building. The author's opinion that before long every new large organ will be built upon the Diaphone as a foundation, is shared by all who have had opportunity to...
36 minute read
M is a pneumatic motor or bellows to which is attached a rod bearing the compound and spring valve V, V 1 , working against the spring S. On the admission of wind (under pressure) to the box A, the motor M is caused to collapse, and thereby to open the valves V, V 1 . Wind then rushes into the chamber B, and entering the interior of motor M through the passage C, equalizes the pressure in the motor. The action of the springs now serves to close the valves V, V 1 , and to open out the motor M, whereupon the process is repeated....
1 minute read
In Fig. 24 we illustrate the Diaphone in the Hope-Jones organ built for Aberdeen University, Scotland. The action is as follows: Wind from the organ bellows enters the pipe foot F, and raises the pressure in the chamber C. The air in the chamber will press upon the back of the valve V, tending to keep it closed. It will press also upon the bellows or motor M, and as this bellows has a much larger area than that of the valve, it will instantly collapse, and, through the medium of the tail piece T, will pull the valve V off its seat and allow the compressed air in the chamber C to rush into the resonator or pipe P. Owing to the inertia of the column of air contained in the pipe P, a momentary compression will take place at the lower end of the pipe, and the pressure...
1 minute read
Referring to Fig. 25, the chamber WW is supplied with air under pressure whenever the organist presses a key or pedal calling into use this particular note. The pressure of air enters through the circular engine supply port S, thus raising the pressure in the chamber C and forcing in an upward direction the aluminum piston P through the medium of the division D (colored black), which forms a portion of the aluminum piston. When the lower edge of the piston has risen a certain distance it will uncover the circular engine exhaust port E, and will allow the compressed air to escape into the atmosphere. At this moment the rise of the piston will have closed the engine supply port S. The momentum acquired by the piston (see Fig. 27) will cause it to travel upward a little further, and this upward travel of the division D will cause...
1 minute read
In Fig. 28 we give an illustration of the form of Diaphone used in the Hope-Jones Unit organ at the Auditorium, Ocean Grove, N. J. P is a pallet controlling the admission of air into the body of the pipe P 1 . M is a motor adapted for plucking open the pallet P through the medium of strap s . The box B is permanently supplied with air under pressure from the bellows. When the valves V and V 1 are in the position shown in the drawing, the Diaphone is out of action, for the wind from the box B will find its way through the valve V (which is open) into the interior of the motor M. When it is desired to make the note speak, the small exterior motors M 1 and M 2 are simultaneously inflated by the electro-pneumatic action operated by depressing the pedal...
1 minute read
In Fig. 29 will be found an illustration of the Diaphone (or valvular reed) used in the Hope-Jones organ at St. Paul's Cathedral, Buffalo, N. Y. Upon depressing a key, wind is admitted into the box B. Pressing upon the valve V it causes it to close against its seat in spite of the action of the spring S. This, however, does not take place until a pulse of air has passed into the foot of the pipe P, thereby originating a sound wave which in due time liberates the valve V and allows the spring S to move it off its seat and allow another puff of air to enter the pipe P. By this means the valve V is kept in rapid vibration and a powerful tone is produced from the pipe P. At Middlesborough, Yorkshire, England, Hope-Jones fitted a somewhat similar Diaphone of 16 feet pitch about...
2 minute read
The action is as follows. Air under pressure enters the chamber B through the pipe foot A, and passing up the ports C, C 1 , C 2 , etc., forces the metal balls D, D 1 , D 2 , etc., upwards into the chamber E; the bottom end of the resonator or pipe. The pressure of air above the balls in the resonator E, then rises until it equals or nearly equals the pressure of air in chamber B. This is owing to the fact that the column of air in the pipe or resonator E possesses weight and inertia, and being elastic, is momentarily compressed at its lower end. This increased pressure above the balls allows them to return to their original position, under the influence of gravity. By the time they have returned to their original position, the pulse of air compression has traveled up the...
2 minute read
Having described the improvements in pipes, we now consider how they are tuned, and the first thing we must notice is the introduction of equal temperament. About fifty years ago most organs were so tuned that the player had to limit himself to certain key signatures if his music was to sound at all pleasant. Using excessive modulation or wandering into forbidden keys resulted in his striking some discordant interval, known as the "wolf." The writer remembers being present at a rehearsal of Handel's "Messiah" in St. George's Hall, Liverpool, Eng., in 1866, when the organ was tuned on the unequal temperament system, and there was a spirited discussion between the conductor and Mr. W. T. Best, who wanted the orchestra to play "Every Valley" in the key of E flat so as to be in better tune with the organ. The modern keyboard is imperfect. One black key is...
26 minute read
Organ reed pipes, especially those of more delicate tone, fail to stand well in tune, especially when the tuner is in a hurry or when he does not know enough of his business to take the spring out of the reed wire after the note has been brought into tune. Few persons fully understand the reason why reeds fail to stand in tune as they ought to....
3 minute read
Figures 31, 32, and 33 will serve to make clear the chief cause for reeds going out of tune. Figure 31 may be taken to represent a reed block, eschallot, tongue and tuning wire at rest. In this case the tuning wire will be pressing firmly against the tongue at the point B, but said tuning wire will not be subjected to any abnormal strain. Turning to Figure 32, if we use the reed knife and slightly lift the tuning wire at the point C, friction against the tongue at the point B will prevent said point B from moving upward. (In this connection it must be borne in mind that the co-efficient of friction in repose is much greater than the co-efficient of friction in motion.) In consequence of the drawing up of the tuning wire at point C, and the frictional resistance at point B holding the latter...
7 minute read
In the study of the art of organ-building one cannot fail to be struck by the fact that almost all the great steps in advance have been due to Englishmen: the compound horizontal bellows, the concussion bellows, the swell box, the pneumatic lever, the tubular-pneumatic action, the electro-pneumatic action, the Universal air chest, the leathered lip, the clothed flue, the diaphone, smooth reed tone, imitative string tone, the vowel cavity, tone reflectors, cement swell boxes, the sound trap joint, suitable bass, the unit organ, movable console, radiating and concave pedal board, combination pedals, combination pistons and keys, the rotary blower—and many other items—were the inventions and work of Englishmen. Speaking in general terms, this country lagged very far behind not only England, but also behind France, and even Germany, in the art of organ-building until comparatively a few years ago. It has recently advanced with extraordinary rapidity, and if it...
15 minute read
We now purpose to give a brief account of the leaders in revolutionizing the King of Instruments, the men whose genius and indomitable perseverance in the face of prejudice, discouragement and seemingly insurmountable obstacles, financial and otherwise, have made the modern organ possible. First of all these comes...
6 minute read
who was born at Bath, England, on Oct. 10, 1806. Left an orphan when five years old, he was brought up by his godfather, who gave him such an education as would fit him for the medical profession, and he was in due time apprenticed to an apothecary and druggist in Bath. This apothecary used to draw teeth, and it was Barker's duty to hold the heads of the patients, whose howls and screams unnerved him so that he refused to learn the business and left before his term of apprenticeship expired. Dr. Hinton does not credit the story that Barker, accidentally witnessing the operations of an eminent organ-builder (Bishop, of London) who was erecting an organ in his neighborhood, determined on following that occupation, and placed himself under that builder for instruction in the art. It seems to be admitted, however, that after spending most of the intervening time...
35 minute read
Barker built an organ for the Roman Catholic Cathedral at Cork, which was no better, and this was his last work. These misfortunes culminated in an appeal to his countrymen for subscriptions on his behalf in the musical papers. In his old age he had married the eighteen-year-old daughter of M. Ougby, his late foreman. He died at Maidstone, Eng., November 26, 1879. This sketch of Barker's career is taken partly from Grove's Dictionary of Music, from Hopkins and Rimbault's History, and from Dr. Hinton's "Story of the Electric Organ." The paragraphs within quotation marks are verbatim from this book by kind permission of Dr. Hinton, whom we have to thank also for the portrait of Barker which appears on another page....
5 minute read
The following sketch of the life of this eminent artist is taken from Dr. Bédart's forthcoming book on "Cavaillé-Coll and His Times," and from Le Monde Musical, of Paris, October 30, 1899, translated by Mr. Robert F. Miller, of Boston. The portrait is from the same magazine. Aristide Cavaillé-Coll was born at Montpellier, France, on the 4th day of February, 1811. He was the son of Dominique Cavaillé-Coll, who was well known as an organ-builder in Languedoc, and grandson of Jean Pierre Cavaillé, the builder of the organs of Saint Catherine and Merci of Barcelona. The name of Coll was that of his grandmother. If we should go back further we find at the commencement of the Eighteenth Century at Gaillac three brothers—Cavaillé-Gabriel, the father of Jean Pierre; Pierre, and Joseph, who also was an organ-builder. Aristide Cavaillé, therefore, came honestly by his profession and at the age of 18...
1 minute read
The following sketch of the greatest organ-builder of the Victorian Era has been condensed from an interview with him as set forth in the London Musical Times for May, 1898. Henry Willis was born in London on April 27, 1821. His father was a builder, a member of the choir of Old Surrey Chapel, and played the drums in the Cecilian Amateur Orchestral Society. The subject of this sketch began to play the organ at very early age; he was entirely self-taught and never had a lesson in his life. In 1835, when he was fourteen years of age, he was articled for seven years to John Gray (afterwards Gray & Davidson), the organ-builder. During his apprenticeship he invented the special manual and pedal couplers which he used in all his instruments for over sixty years. He had to tune the organ in St. George's Chapel, Windsor, where he made...
9 minute read
About the year 1847 Henry Willis started in business for himself as an organ-builder, and his first great success was in rebuilding the organ in Gloucester Cathedral. "It was my stepping-stone to fame," he says. "The Swell, down to double C, had twelve stops and a double Venetian front. The pianissimo was simply astounding. I received 400 pounds for the job, and I was presumptuous enough to marry." For the Great Exhibition of 1851 in the Crystal Palace (then in Hyde Park), Mr. Willis erected a magnificent organ which attracted extraordinary attention and was visited by the Queen and Prince Consort. It had three manuals and pedals, seventy sounding stops and seven couplers. There were twenty-two stops on the Swell, and the Swell bellows was placed inside the Swell box. The manual compass extended to G in altissimo and the pedals from CCC to G—32 notes. There were other important...
22 minute read
Robert is the third son of the late William Hope-Jones, Hooton Grange, Cheshire, England. His father, a man of means, was prominent as one of the pioneers in organizing the volunteer army of Great Britain. He was musical, playing the cornet and having an unusual tenor voice. His mother (Agnes Handforth)—also musical and a gifted singer—was a daughter of the Rector of Ashton-under-Lyne, Lancashire,—a highly nervous woman....
14 minute read
There were nine children of the marriage—two girls and seven boys. Robert appeared on the ninth of February, 1859. He inherited in exaggerated degree his mother's highly strung nervous nature. Melancholy, weak and sickly as a child, he was not expected to live. To avoid the damp and cold of English winters he was periodically taken to the south of France. Deemed too delicate for school, a private tutor was provided. Joining in sports or games was out of the question for so sensitive and delicate a youth,—what more natural, therefore, than that he should become a dreamer—a thinker? Too ill for any real study, his musical instincts drove him to the organ, and we find him playing for occasional services at Eastham Parish Church at the age of nine. After his father's death, when he was about fourteen, he spent a couple of years in irregular attendance at school,...
2 minute read
Looking backward over the field we have traversed we find that the modern organ is an entirely different instrument from that of the Nineteenth Century. Tracker action, bellows weights, the multitude of weak, drab-toned stops, have disappeared, and in their place we have stops of more musical character, greater volume, under perfect and wide control; new families of string and orchestral tones; great flexibility, through transference of stops; an instrument of smaller bulk than the old one, but yet of infinitely greater resources. In his "Handbook of the Organ" (page 24), J. Matthews says: "There can be no finality in organ building. Whilst the violin fascinates by its perfection, the organ does so no less by its almost infinite possibilities, and modern science is fast transforming it into a highly sensitive instrument. The orchestral effects and overwhelming crescendos possible from such organs as those described in this work, 'double touch,'...
2 minute read
When one listens to the Welte-Mignon Piano Player, it seems difficult to believe that a skilled artist is not at the keyboard performing the music. The exact instant of striking each note and the duration during which the key is held are faithfuly recorded and reproduced with absolute accuracy, and a pretty close approximation to the power of blow with which each key is struck is obtained. The first of these, that is, the time and duration of the note, is directly recorded from the artist who plays the piece to be reproduced. The second of these, that is, the power of tone, is subsequently added to the record either by the artist himself or by musicians who have carefully studied his manner of playing. The result of this is a very faithful reproduction of the original performance. In the case of the organ, the pressure with which the keys...
1 minute read
This noble instrument was built by Henry Willis to the specification of Dr. S. S. Wesley, by whom it was opened on the 29th and 30th of May, 1855. The writer made its acquaintance in 1866, when it was tuned on the unequal temperament system. In 1867 Mr. Best succeeded in getting it re-tuned in equal-temperament, several improvements were made, and the wind pressure on four of the reed stops on the Solo organ increased from 9 1/2 inches to 22 inches. In 1898 the organ was thoroughly rebuilt with tubular pneumatic action in place of the Barker levers. The compass of the manuals was changed from GG--a 3 to CC--c 4 ,[1] five octaves, and the pedals were carried up to g--33 notes. A Swell to Choir coupler was added (!) and various changes made in the stops, the Vox Humana transferred from the Swell to the Solo organ,...
2 minute read
The following is the specification of the organ as it now stands, in its revised form: In addition to these coupling movements there are other accessories, consisting of 36 pneumatic pistons, 6 to each manual, and 12 acting upon the Pedal stops. There are also 6 composition pedals acting upon the "Great" and "Pedal" stops simultaneously, and 4 pedals acting upon the Swell organ pistons. The Swell and Solo organs are each provided with tremulants. Two large bellows in the basement of the Hall, and blown by two steam engines of 8 h.p. and 1/2 h.p. respectively, supply the wind, which passes from the bellows to 14 reservoirs in various positions in the instrument, the pressure varying from 3 1/2 to 22 inches....
31 minute read
The ancient organ in the Cathedral of Notre-Dame de Paris was built in the reign of Louis XV by Thierry Leselope and the best workmen of his time. In the Eighteenth Century repairs and additions were made by the celebrated Cliquot. Further repairs were made by Dalsey from 1832 to 1838, and in 1863 the French Government confided the complete reconstruction of the instrument to Aristide Cavaillé-Coll. He spent five years over the work, and the new organ was solemnly inaugurated on the 6th of March, 1868....
3 minute read
It will be noticed that this illustration is not a photograph, but a wood engraving, drawn by hand, and the artist was evidently not a musician--he only shows 38 keys on each manual; there should be 56. It stands in a gallery over the west door of the Cathedral. It has five manuals of 56 notes each, CC to g 3 , pedal of 30 notes, CCC to F; 86 sounding stops "controlled by 110 registers"; 32 combination pedals, and 6,000 pipes, the longest being 32 feet. The action is Cavaillé-Coll's latest improvement on the Barker pneumatic lever. The wind reservoirs contain 35,000 litres of compressed air, fed by 6 pairs of pompes furnishing 600 litres of air per second. Here is the specification: The printed specification kindly furnished to us by Dr. William C. Carl, of New York, who obtained it specially from Mr. Charles Mutin, of Paris, Cavaillé-Coll's...
4 minute read
The old organ in St. Paul's Cathedral, London, on which Sir John Goss played, and which had felt the magic touch of Mendelssohn, had 13 stops on the Great, 7 on the Swell, 8 on the Choir and only one on the Pedal. It stood in a case on the screen between the choir and the nave of the Cathedral. We have noted elsewhere in this book how Willis had this screen removed, and rebuilt the organ on each side in 1872. In 1891 it was rebuilt in its present form as noted below. The writer first saw and heard this organ in 1873, and never failed, on his frequent visits to London in later years, to attend a service in St. Paul's Cathedral, where there are two choral services daily all the year round. No summer vacations here. The effect of the Tuba ringing up into the dome is...
41 minute read
All good Americans when they visit London go to Westminster Abbey, and will be interested in the organ there; in fact we believe it was largely built with American money. The house of William Hill & Son, who built this organ, is the oldest firm of organ-builders in England, being descended from the celebrated artist, John Snetzler, whose business, founded in 1755, passed into the possession of Thomas Elliot, and to his son-in-law, William Hill (inventor of the Tuba), in the earlier part of the Nineteenth Century. The business has been in the Hill family nearly a hundred years and is now directed by William Hill's grandson. The firm has built many notable instruments in Great Britain and her colonies (Sydney) celebrated for the refinement and purity of their tone....
3 minute read
The organ in Westminster Abbey is placed at each side of the choir screen, except the Celestial organ, which is placed in the triforium of the south transept (Poets' Corner) and connected with the console by an electric cable 200 feet long. The form of action used is Messrs. Hill's own, and the "stop-keys" therefor (made to a pattern suggested by Sir Frederick Bridge) will be seen in the picture to the left of the music desk. Note that this organ can be played from two keyboards. The main organ has pneumatic action throughout. It was commenced in 1884, added to as funds were available, and finished in 1895. The specification (containing the additions made in 1908-9) follows: In 1908-1909 the organ was refitted throughout with William Hill & Sons' latest type of tubular pneumatic action (excepting the Celestial organ, for which the electric action was retained), an entirely new...
25 minute read
The organs heretofore described have been somewhat on the old lines, but we come now, in 1894, to "the dawn of a new era," and the star of Hope-Jones appears on the horizon. With the exception of an instrument rebuilt by Hope-Jones in Dundee Parish Church, this is the first organ with electric action in Scotland....
2 minute read
Balruddery mansion, the rural residence of Mr. J. Martin White, stands in a fair country seven miles to the west of Dundee. The grounds of the mansion are a dream of sylvan beauty, with the broad bosom of the River Tay within the vision and beyond that the blue line of the Fife shore. The organ is the work of three hands. It was originally built by Casson; the most notable characters in the voicing are due to Thynne; and it remained for Mr. Hope-Jones to entirely reconstruct it with his electric action, stop-keys, double touch, pizzicato touch and some of his new stops. The console is movable, connected with the organ by a cable about one inch thick, containing about 1,000 wires, enabling the player to hear the organ as the audience hears it. Referring to the view of the hall on page 167, the Great organ is in...
4 minute read
Next in chronological order comes the epoch-making organ in Worcester Cathedral, England, built by Hope-Jones in 1896. Here he gave to the world the result of his researches into the production of organ tone, and we make bold to say that no other instrument has so revolutionized and exerted such an influence on the art of organ-building both in England and the United States. Here for the first time we find that wonderful invention, the Diaphone, and even the nomenclature of the various stops is new, however familiar they may be now, seventeen years later. Hope-Jones is reported to have spent several days in the Cathedral studying its acoustic properties before planning this organ, and the result was a marvelous ensemble of tone. The fame thereof spread abroad and eminent musicians made pilgrimages from all parts of the earth to see and hear it, as mentioned in our account of...
2 minute read
This magnificent instrument, built by the Hutchings-Votey Organ Company in 1902, possesses increased foundation tone and higher wind pressures. The late Professor Samuel S. Sanford, devoted much time and interest in its design. He visited Worcester Cathedral, England, and was profoundly impressed with the new epoch in tone production heralded by that organ. He made an effort to have Mr. Hope-Jones voice one of his Tibias and Smooth Tubas for the Yale organ; and though his effort was not successful, leading features of the Worcester instrument were frankly imitated and generously acknowledged. It was largely due to the liberality of Mr. George S. Hutchings in interpreting the terms of the contract that such a complete instrument was secured for the University. In recognition of this and in view of Mr. Hutchings' artistic contributions to the art of organ-building, the University conferred upon him the honorary degree of Master of Arts....
5 minute read
This instrument, built by the Hope-Jones Organ Company and opened Christmas, 1908, in one of the finest churches in America, takes position among the great and important organs of the New World. It is built on the "Unit" principle, and is divided between the extreme ends of the lofty structure. The chancel organ, consisting of four extended stops, occupies the old organ chamber, which opens into the chancel and the transept of the church. This portion of the instrument stands in a cement swell box, its tone being thrown through the arch and into the chancel by means of reflectors. It contains a Diaphone, the full organ being very powerful, although its various tones can be reduced to whispers by closing the laminated lead shutters, which are electrically controlled through the general swell pedal at the console. The other division of the instrument, the organ proper, is located in the...
36 minute read
This fine instrument was installed in May, 1913, and hailed by the people of Denver with great enthusiasm. The president of the Paris Theatre Company, writing under date of June 9, says: "The wonderful instrument * * * is proving a source of interest to the whole city and has materially added to the fame of 'The Paris' as the leading picture theatre of Denver. No thirty-piece orchestra could accompany the pictures so well as the Hope-Jones Unit Orchestra does. Neither would it so completely carry away with enthusiasm the crowd that flock to hear it."...
2 minute read
Only the keyboards are visible from the auditorium; the instrument is placed on each side of the proscenium, occupying the place of the usual stage boxes, the tone being reflected into the theatre through ornamental case work. The 32-foot open diaphone is located behind the picture screen. The specification:...
2 minute read
This organ was built by the Ernest M. Skinner Company, Boston, Mass., in 1911. It is the gift of Mr. and Mrs. Levi P. Morton, and is said to have cost $50,000. It is contained in two cases on each side of the triforium of the chancel and blown by an electric installation of 85 h.p....
30 minute read
Many fine organs have been erected in Canada and the northern part of the United States by Casavant Frères, of St. Hyacinthe, Province of Quebec, among which we may mention the Church of Notre-Dame in Montreal, the Cathedrals of Montreal and Ottawa, the Northwestern University, Chicago, and the Grand Opera House, Boston. The organ in the Convocation Hall of the University of Toronto has 4 manuals of 61 notes, CC to c 4 ; pedals of 32 notes, CCC to g; electro-pneumatic action; 76 speaking stops; 32 couplers, and 4,800 pipes. The organ was inaugurated June 6, 1912. The specification follows:...
2 minute read
This organ was built by the Austin Organ Company, of Hartford, Conn., in 1912. It was presented to the city of Portland by Mr. Cyrus K. Curtis, of the Saturday Evening Post, in memory of the late Hermann Kotschmar, whose "Te Deum" is well known in the United States. The organ is in a handsome case on the platform at one end of the hall and is entitled to take its place among the world's great instruments. It is certainly a coincidence that those who have been associated with Mr. Hope-Jones in business now rank as the foremost organ builders in America, as witness this fine organ and that in the Cathedral of St. John the Divine in New York. The Portland organ has four manuals of 61 notes, CC to c 3 , and pedal of 32 notes, CCC to g. There are 88 sounding stops and 33 couplers....
2 minute read
The firm of Henry Willis & Sons was established in 1845 by the late "Father" Willis, who took his two sons, Vincent Willis and Henry Willis, into partnership with him in 1878. The majority of the patents and improvements produced by the firm were solely the work of "Father" Willis, although his son Vincent was associated with him in certain of the later patents. Vincent Willis left the firm in 1894, six years previous to the death of "Father" Willis, which occurred in February, 1900, and the business has since been carried on by his son, Mr. Henry Willis, with whom is associated Mr. Henry Willis, Jr., the grandson of the founder. The famous traditions of the firm in the field of reed-voicing and flue tone have been maintained by the present partners, who are both experienced voicers; and in general up-to-date mechanical details the firm is in the forefront...