The Ten Books On Architecture
Vitruvius Pollio
107 chapters
8 hour read
Selected Chapters
107 chapters
PREFACE
PREFACE
During the last years of his life, Professor Morgan had devoted much time and energy to the preparation of a translation of Vitruvius, which he proposed to supplement with a revised text, illustrations, and notes. He had completed the translation, with the exception of the last four chapters of the tenth book, and had discussed, with Professor Warren, the illustrations intended for the first six books of the work; the notes had not been arranged or completed, though many of them were outlined in
7 minute read
Read Chapter
Read Chapter
PREFACE
PREFACE
1. While your divine intelligence and will, Imperator Caesar, were engaged in acquiring the right to command the world, and while your fellow citizens, when all their enemies had been laid low by your invincible valour, were glorying in your triumph and victory,—while all foreign nations were in subjection awaiting your beck and call, and the Roman people and senate, released from their alarm, were beginning to be guided by your most noble conceptions and policies, I hardly dared, in view of you
2 minute read
Read Chapter
Read Chapter
THE EDUCATION OF THE ARCHITECT
THE EDUCATION OF THE ARCHITECT
1. The architect should be equipped with knowledge of many branches of study and varied kinds of learning, for it is by his judgement that all work done by the other arts is put to test. This knowledge is the child of practice and theory. Practice is the continuous and regular exercise of employment where manual work is done with any necessary material according to the design of a drawing. Theory, on the other hand, is the ability to demonstrate and explain the productions of dexterity on the pr
12 minute read
Read Chapter
Read Chapter
THE FUNDAMENTAL PRINCIPLES OF ARCHITECTURE
THE FUNDAMENTAL PRINCIPLES OF ARCHITECTURE
1. Architecture depends on Order (in Greek τἁξις), Arrangement (in Greek διἁθεσις), Eurythmy, Symmetry, Propriety, and Economy (in Greek οἱκονομἱα). 2. Order gives due measure to the members of a work considered separately, and symmetrical agreement to the proportions of the whole. It is an adjustment according to quantity (in Greek ποσὁτης). By this I mean the selection of modules from the members of the work itself and, starting from these individual parts of members, constructing the whole wo
5 minute read
Read Chapter
Read Chapter
THE DEPARTMENTS OF ARCHITECTURE
THE DEPARTMENTS OF ARCHITECTURE
1. There are three departments of architecture: the art of building, the making of timepieces, and the construction of machinery. Building is, in its turn, divided into two parts, of which the first is the construction of fortified towns and of works for general use in public places, and the second is the putting up of structures for private individuals. There are three classes of public buildings: the first for defensive, the second for religious, and the third for utilitarian purposes. Under d
1 minute read
Read Chapter
Read Chapter
THE SITE OF A CITY
THE SITE OF A CITY
1. For fortified towns the following general principles are to be observed. First comes the choice of a very healthy site. Such a site will be high, neither misty nor frosty, and in a climate neither hot nor cold, but temperate; further, without marshes in the neighbourhood. For when the morning breezes blow toward the town at sunrise, if they bring with them mists from marshes and, mingled with the mist, the poisonous breath of the creatures of the marshes to be wafted into the bodies of the in
7 minute read
Read Chapter
Read Chapter
THE CITY WALLS
THE CITY WALLS
1. After insuring on these principles the healthfulness of the future city, and selecting a neighbourhood that can supply plenty of food stuffs to maintain the community, with good roads or else convenient rivers or seaports affording easy means of transport to the city, the next thing to do is to lay the foundations for the towers and walls. Dig down to solid bottom, if it can be found, and lay them therein, going as deep as the magnitude of the proposed work seems to require. They should be mu
4 minute read
Read Chapter
Read Chapter
THE DIRECTIONS OF THE STREETS; WITH REMARKS ON THE WINDS
THE DIRECTIONS OF THE STREETS; WITH REMARKS ON THE WINDS
1. The town being fortified, the next step is the apportionment of house lots within the wall and the laying out of streets and alleys with regard to climatic conditions. They will be properly laid out if foresight is employed to exclude the winds from the alleys. Cold winds are disagreeable, hot winds enervating, moist winds unhealthy. We must, therefore, avoid mistakes in this matter and beware of the common experience of many communities. For example, Mytilene in the island of Lesbos is a tow
9 minute read
Read Chapter
Read Chapter
THE SITES FOR PUBLIC BUILDINGS
THE SITES FOR PUBLIC BUILDINGS
1. Having laid out the alleys and determined the streets, we have next to treat of the choice of building sites for temples, the forum, and all other public places, with a view to general convenience and utility. If the city is on the sea, we should choose ground close to the harbour as the place where the forum is to be built; but if inland, in the middle of the town. For the temples, the sites for those of the gods under whose particular protection the state is thought to rest and for Jupiter,
1 minute read
Read Chapter
Read Chapter
INTRODUCTION
INTRODUCTION
1. Dinocrates, an architect who was full of confidence in his own ideas and skill, set out from Macedonia, in the reign of Alexander, to go to the army, being eager to win the approbation of the king. He took with him from his country letters from relatives and friends to the principal military men and officers of the court, in order to gain access to them more readily. Being politely received by them, he asked to be presented to Alexander as soon as possible. They promised, but were rather slow
3 minute read
Read Chapter
Read Chapter
THE ORIGIN OF THE DWELLING HOUSE
THE ORIGIN OF THE DWELLING HOUSE
1. The men of old were born like the wild beasts, in woods, caves, and groves, and lived on savage fare. As time went on, the thickly crowded trees in a certain place, tossed by storms and winds, and rubbing their branches against one another, caught fire, and so the inhabitants of the place were put to flight, being terrified by the furious flame. After it subsided, they drew near, and observing that they were very comfortable standing before the warm fire, they put on logs and, while thus keep
6 minute read
Read Chapter
Read Chapter
ON THE PRIMORDIAL SUBSTANCE ACCORDING TO THE PHYSICISTS
ON THE PRIMORDIAL SUBSTANCE ACCORDING TO THE PHYSICISTS
1. First of all Thales thought that water was the primordial substance of all things. Heraclitus of Ephesus, surnamed by the Greeks σκοτεινος on account of the obscurity of his writings, thought that it was fire. Democritus and his follower Epicurus thought that it was the atoms, termed by our writers "bodies that cannot be cut up," or, by some, "indivisibles." The school of the Pythagoreans added air and the earthy to the water and fire. Hence, although Democritus did not in a strict sense name
1 minute read
Read Chapter
Read Chapter
BRICK
BRICK
1. Beginning with bricks, I shall state of what kind of clay they ought to be made. They should not be made of sandy or pebbly clay, or of fine gravel, because when made of these kinds they are in the first place heavy; and, secondly, when washed by the rain as they stand in walls, they go to pieces and break up, and the straw in them does not hold together on account of the roughness of the material. They should rather be made of white and chalky or of red clay, or even of a coarse grained grav
3 minute read
Read Chapter
Read Chapter
SAND
SAND
1. In walls of masonry the first question must be with regard to the sand, in order that it may be fit to mix into mortar and have no dirt in it. The kinds of pitsand are these: black, gray, red, and carbuncular. Of these the best will be found to be that which crackles when rubbed in the hand, while that which has much dirt in it will not be sharp enough. Again: throw some sand upon a white garment and then shake it out; if the garment is not soiled and no dirt adheres to it, the sand is suitab
1 minute read
Read Chapter
Read Chapter
LIME
LIME
1. Sand and its sources having been thus treated, next with regard to lime we must be careful that it is burned from a stone which, whether soft or hard, is in any case white. Lime made of close-grained stone of the harder sort will be good in structural parts; lime of porous stone, in stucco. After slaking it, mix your mortar, if using pitsand, in the proportions of three parts of sand to one of lime; if using river or sea-sand, mix two parts of sand with one of lime. These will be the right pr
2 minute read
Read Chapter
Read Chapter
POZZOLANA
POZZOLANA
1. There is also a kind of powder which from natural causes produces astonishing results. It is found in the neighbourhood of Baiae and in the country belonging to the towns round about Mt. Vesuvius. This substance, when mixed with lime and rubble, not only lends strength to buildings of other kinds, but even when piers of it are constructed in the sea, they set hard under water. The reason for this seems to be that the soil on the slopes of the mountains in these neighbourhoods is hot and full
4 minute read
Read Chapter
Read Chapter
STONE
STONE
1. I have now spoken of lime and sand, with their varieties and points of excellence. Next comes the consideration of stone-quarries from which dimension stone and supplies of rubble to be used in building are taken and brought together. The stone in quarries is found to be of different and unlike qualities. In some it is soft: for example, in the environs of the city at the quarries of Grotta Rossa, Palla, Fidenae, and of the Alban hills; in others, it is medium, as at Tivoli, at Amiternum, or
3 minute read
Read Chapter
Read Chapter
METHODS OF BUILDING WALLS
METHODS OF BUILDING WALLS
1. There are two styles of walls: "opus reticulatum," now used by everybody, and the ancient style called "opus incertum." Of these, the reticulatum looks better, but its construction makes it likely to crack, because its beds and builds spread out in every direction. On the other hand, in the opus incertum, the rubble, lying in courses and imbricated, makes a wall which, though not beautiful, is stronger than the reticulatum. 2. Both kinds should be constructed of the smallest stones, so that t
13 minute read
Read Chapter
Read Chapter
TIMBER
TIMBER
1. Timber should be felled between early Autumn and the time when Favonius begins to blow. For in Spring all trees become pregnant, and they are all employing their natural vigour in the production of leaves and of the fruits that return every year. The requirements of that season render them empty and swollen, and so they are weak and feeble because of their looseness of texture. This is also the case with women who have conceived. Their bodies are not considered perfectly healthy until the chi
10 minute read
Read Chapter
Read Chapter
HIGHLAND AND LOWLAND FIR
HIGHLAND AND LOWLAND FIR
1. The first spurs of the Apennines arise from the Tuscan sea between the Alps and the most distant borders of Tuscany. The mountain range itself bends round and, almost touching the shores of the Adriatic in the middle of the curve, completes its circuit by extending to the strait on the other shore. Hence, this side of the curve, sloping towards the districts of Tuscany and Campania, lies basking in the sun, being constantly exposed to the full force of its rays all day. But the further side,
1 minute read
Read Chapter
Read Chapter
INTRODUCTION
INTRODUCTION
1. Apollo at Delphi, through the oracular utterance of his priestess, pronounced Socrates the wisest of men. Of him it is related that he said with sagacity and great learning that the human breast should have been furnished with open windows, so that men might not keep their feelings concealed, but have them open to the view. Oh that nature, following his idea, had constructed them thus unfolded and obvious to the view! For if it had been so, not merely the virtues and vices of the mind would b
3 minute read
Read Chapter
Read Chapter
ON SYMMETRY: IN TEMPLES AND IN THE HUMAN BODY
ON SYMMETRY: IN TEMPLES AND IN THE HUMAN BODY
1. The design of a temple depends on symmetry, the principles of which must be most carefully observed by the architect. They are due to proportion, in Greek ἁναλογἱα. Proportion is a correspondence among the measures of the members of an entire work, and of the whole to a certain part selected as standard. From this result the principles of symmetry. Without symmetry and proportion there can be no principles in the design of any temple; that is, if there is no precise relation between its membe
5 minute read
Read Chapter
Read Chapter
CLASSIFICATION OF TEMPLES
CLASSIFICATION OF TEMPLES
1. There are certain elementary forms on which the general aspect of a temple depends. First there is the temple in antis, or ναος ἑν παραστἁσιν as it is called in Greek; then the prostyle, amphiprostyle, peripteral, pseudodipteral, dipteral, and hypaethral. These different forms may be described as follows. 2. It will be a temple in antis when it has antae carried out in front of the walls which enclose the cella, and in the middle, between the antae, two columns, and over them the pediment con
2 minute read
Read Chapter
Read Chapter
THE PROPORTIONS OF INTERCOLUMNIATIONS AND OF COLUMNS
THE PROPORTIONS OF INTERCOLUMNIATIONS AND OF COLUMNS
1. There are five classes of temples, designated as follows: pycnostyle, with the columns close together; systyle, with the intercolumniations a little wider; diastyle, more open still; araeostyle, farther apart than they ought to be; eustyle, with the intervals apportioned just right. The Classification Of Temples According To Intercolumniation the classification of temples according to intercolumniation 2. The pycnostyle is a temple in an intercolumniation of which the thickness of a column an
7 minute read
Read Chapter
Read Chapter
THE FOUNDATIONS AND SUBSTRUCTURES OF TEMPLES
THE FOUNDATIONS AND SUBSTRUCTURES OF TEMPLES
1. The foundations of these works should be dug out of the solid ground, if it can be found, and carried down into solid ground as far as the magnitude of the work shall seem to require, and the whole substructure should be as solid as it can possibly be laid. Above ground, let walls be laid under the columns, thicker by one half than the columns are to be, so that the lower may be stronger than the higher. Hence they are called "stereobates"; for they take the load. And the projections of the b
2 minute read
Read Chapter
Read Chapter
PROPORTIONS OF THE BASE, CAPITALS, AND ENTABLATURE IN THE IONIC ORDER
PROPORTIONS OF THE BASE, CAPITALS, AND ENTABLATURE IN THE IONIC ORDER
1. This finished, let the bases of the columns be set in place, and constructed in such proportions that their height, including the plinth, may be half the thickness of a column, and their projection (called in Greek ἑκφορἁ) the same. [1] Thus in both length and breadth it will be one and one half thicknesses of a column. 2. If the base is to be in the Attic style, let its height be so divided that the upper part shall be one third part of the thickness of the column, and the rest left for the
10 minute read
Read Chapter
Read Chapter
INTRODUCTION
INTRODUCTION
1. I have observed, Emperor, that many in their treatises and volumes of commentaries on architecture have not presented the subject with well-ordered completeness, but have merely made a beginning and left, as it were, only desultory fragments. I have therefore thought that it would be a worthy and very useful thing to reduce the whole of this great art to a complete and orderly form of presentation, and then in different books to lay down and explain the required characteristics of different d
57 minute read
Read Chapter
Read Chapter
THE ORIGINS OF THE THREE ORDERS, AND THE PROPORTIONS OF THE CORINTHIAN CAPITAL
THE ORIGINS OF THE THREE ORDERS, AND THE PROPORTIONS OF THE CORINTHIAN CAPITAL
1. Corinthian columns are, excepting in their capitals, of the same proportions in all respects as Ionic; but the height of their capitals gives them proportionately a taller and more slender effect. This is because the height of the Ionic capital is only one third of the thickness of the column, while that of the Corinthian is the entire thickness of the shaft. Hence, as two thirds are added in Corinthian capitals, their tallness gives a more slender appearance to the columns themselves. 2. The
6 minute read
Read Chapter
Read Chapter
THE ORNAMENTS OF THE ORDERS
THE ORNAMENTS OF THE ORDERS
1. Since the origin and invention of the orders of columns have been described above, I think it not out of place to speak in the same way about their ornaments, showing how these arose and from what original elements they were devised. The upper parts of all buildings contain timber work to which various terms are applied. And not only in its terminology but actually in its uses it exhibits variety. The main beams are those which are laid upon columns, pilasters, and antae; tie-beams and rafter
4 minute read
Read Chapter
Read Chapter
PROPORTIONS OF DORIC TEMPLES
PROPORTIONS OF DORIC TEMPLES
1. Some of the ancient architects said that the Doric order ought not to be used for temples, because faults and incongruities were caused by the laws of its symmetry. Arcesius and Pytheos said so, as well as Hermogenes. He, for instance, after getting together a supply of marble for the construction of a Doric temple, changed his mind and built an Ionic temple to Father Bacchus with the same materials. This is not because it is unlovely in appearance or origin or dignity of form, but because th
6 minute read
Read Chapter
Read Chapter
THE CELLA AND PRONAOS
THE CELLA AND PRONAOS
1. The length of a temple is adjusted so that its width may be half its length, and the actual cella one fourth greater in length than in width, including the wall in which the folding doors are placed. Let the remaining three parts, constituting the pronaos, extend to the antae terminating the walls, which antae ought to be of the same thickness as the columns. If the temple is to be more than twenty feet in width, let two columns be placed between the two antae, to separate the pteroma from th
2 minute read
Read Chapter
Read Chapter
HOW THE TEMPLE SHOULD FACE
HOW THE TEMPLE SHOULD FACE
1. The quarter toward which temples of the immortal gods ought to face is to be determined on the principle that, if there is no reason to hinder and the choice is free, the temple and the statue placed in the cella should face the western quarter of the sky. This will enable those who approach the altar with offerings or sacrifices to face the direction of the sunrise in facing the statue in the temple, and thus those who are undertaking vows look toward the quarter from which the sun comes for
1 minute read
Read Chapter
Read Chapter
THE DOORWAYS OF TEMPLES
THE DOORWAYS OF TEMPLES
1. For the doorways of temples and their casings the rules are as follows, first determining of what style they are to be. The styles of portals are Doric, Ionic, and Attic. In the Doric, the symmetrical proportions are distinguished by the following rules. Let the top of the corona, which is laid above the casing, be on a level with the tops of the capitals of the columns in the pronaos. The aperture of the doorway should be determined by dividing the height of the temple, from floor to coffere
4 minute read
Read Chapter
Read Chapter
TUSCAN TEMPLES
TUSCAN TEMPLES
1. The place where the temple is to be built having been divided on its length into six parts, deduct one and let the rest be given to its width. Then let the length be divided into two equal parts, of which let the inner be reserved as space for the cellae, and the part next the front left for the arrangement of the columns. 2. Next let the width be divided into ten parts. Of these, let three on the right and three on the left be given to the smaller cellae, or to the alae if there are to be al
2 minute read
Read Chapter
Read Chapter
CIRCULAR TEMPLES AND OTHER VARIETIES
CIRCULAR TEMPLES AND OTHER VARIETIES
1. There are also circular temples, some of which are constructed in monopteral form, surrounded by columns but without a cella, while others are termed peripteral. Those that are without a cella have a raised platform and a flight of steps leading to it, one third of the diameter of the temple. The columns upon the stylobates are constructed of a height equivalent to the diameter taken between the outer edges of the stylobate walls, and of a thickness equivalent to one tenth of their height inc
3 minute read
Read Chapter
Read Chapter
ALTARS
ALTARS
Altars should face the east, and should always be placed on a lower level than are the statues in the temples, so that those who are praying and sacrificing may look upwards towards the divinity. They are of different heights, being each regulated so as to be appropriate to its own god. Their heights are to be adjusted thus: for Jupiter and all the celestials, let them be constructed as high as possible; for Vesta and Mother Earth, let them be built low. In accordance with these rules will altar
34 minute read
Read Chapter
Read Chapter
INTRODUCTION
INTRODUCTION
1. Those who have filled books of unusually large size, Emperor, in setting forth their intellectual ideas and doctrines, have thus made a very great and remarkable addition to the authority of their writings. I could wish that circumstances made this as permissible in the case of our subject, so that the authority of the present treatise might be increased by amplifications; but this is not so easy as it may be thought. Writing on architecture is not like history or poetry. History is captivati
3 minute read
Read Chapter
Read Chapter
THE FORUM AND BASILICA
THE FORUM AND BASILICA
1. The Greeks lay out their forums in the form of a square surrounded by very spacious double colonnades, adorn them with columns set rather closely together, and with entablatures of stone or marble, and construct walks above in the upper story. But in the cities of Italy the same method cannot be followed, for the reason that it is a custom handed down from our ancestors that gladiatorial shows should be given in the forum.   Forum At Timgad From Gsell forum at timgad A, Forum. B, Basilica. C,
5 minute read
Read Chapter
Read Chapter
THE TREASURY, PRISON, AND SENATE HOUSE
THE TREASURY, PRISON, AND SENATE HOUSE
1. The treasury, prison, and senate house ought to adjoin the forum, but in such a way that their dimensions may be proportionate to those of the forum. Particularly, the senate house should be constructed with special regard to the importance of the town or city. If the building is square, let its height be fixed at one and one half times its breadth; but if it is to be oblong, add together its length and breadth and, having got the total, let half of it be devoted to the height up to the coffe
50 minute read
Read Chapter
Read Chapter
THE THEATRE: ITS SITE, FOUNDATIONS AND ACOUSTICS
THE THEATRE: ITS SITE, FOUNDATIONS AND ACOUSTICS
1. After the forum has been arranged, next, for the purpose of seeing plays or festivals of the immortal gods, a site as healthy as possible should be selected for the theatre, in accordance with what has been written in the first book, on the principles of healthfulness in the sites of cities. For when plays are given, the spectators, with their wives and children, sit through them spell-bound, and their bodies, motionless from enjoyment, have the pores open, into which blowing winds find their
3 minute read
Read Chapter
Read Chapter
HARMONICS
HARMONICS
1. Harmonics is an obscure and difficult branch of musical science, especially for those who do not know Greek. If we desire to treat of it, we must use Greek words, because some of them have no Latin equivalents. Hence, I will explain it as clearly as I can from the writings of Aristoxenus, append his scheme, and define the boundaries of the notes, so that with somewhat careful attention anybody may be able to understand it pretty easily. 2. The voice, in its changes of position when shifting p
4 minute read
Read Chapter
Read Chapter
SOUNDING VESSELS IN THE THEATRE
SOUNDING VESSELS IN THE THEATRE
1. In accordance with the foregoing investigations on mathematical principles, let bronze vessels be made, proportionate to the size of the theatre, and let them be so fashioned that, when touched, they may produce with one another the notes of the fourth, the fifth, and so on up to the double octave. Then, having constructed niches in between the seats of the theatre, let the vessels be arranged in them, in accordance with musical laws, in such a way that they nowhere touch the wall, but have a
4 minute read
Read Chapter
Read Chapter
PLAN OF THE THEATRE
PLAN OF THE THEATRE
1. The plan of the theatre itself is to be constructed as follows. Having fixed upon the principal centre, draw a line of circumference equivalent to what is to be the perimeter at the bottom, and in it inscribe four equilateral triangles, at equal distances apart and touching the boundary line of the circle, as the astrologers do in a figure of the twelve signs of the zodiac, when they are making computations from the musical harmony of the stars. Taking that one of these triangles whose side i
5 minute read
Read Chapter
Read Chapter
GREEK THEATRES
GREEK THEATRES
1. In the theatres of the Greeks, these same rules of construction are not to be followed in all respects. First, in the circle at the bottom where the Roman has four triangles, the Greek has three squares with their angles touching the line of circumference. The square whose side is nearest to the "scaena," and cuts off a segment of the circle, determines by this line the limits of the "proscaenium" (A, B). Parallel to this line and tangent to the outer circumference of the segment, a line is d
1 minute read
Read Chapter
Read Chapter
ACOUSTICS OF THE SITE OF A THEATRE
ACOUSTICS OF THE SITE OF A THEATRE
1. All this having been settled with the greatest pains and skill, we must see to it, with still greater care, that a site has been selected where the voice has a gentle fall, and is not driven back with a recoil so as to convey an indistinct meaning to the ear. There are some places which from their very nature interfere with the course of the voice, as for instance the dissonant, which are termed in Greek κατηχουντεϛ; the circumsonant, which with them are named περιηχουντες; again the resonant
1 minute read
Read Chapter
Read Chapter
COLONNADES AND WALKS
COLONNADES AND WALKS
1. Colonnades must be constructed behind the scaena, so that when sudden showers interrupt plays, the people may have somewhere to retire from the theatre, and so that there may be room for the preparation of all the outfit of the stage. Such places, for instance, are the colonnades of Pompey, and also, in Athens, the colonnades of Eumenes and the fane of Father Bacchus; also, as you leave the theatre, the music hall which Themistocles surrounded with stone columns, and roofed with the yards and
5 minute read
Read Chapter
Read Chapter
BATHS
BATHS
1. In the first place, the warmest possible situation must be selected; that is, one which faces away from the north and northeast. The rooms for the hot and tepid baths should be lighted from the southwest, or, if the nature of the situation prevents this, at all events from the south, because the set time for bathing is principally from midday to evening. We must also see to it that the hot bath rooms in the women's and men's departments adjoin each other, and are situated in the same quarter;
3 minute read
Read Chapter
Read Chapter
THE PALAESTRA
THE PALAESTRA
1. Next, although the building of palaestrae is not usual in Italy, I think it best to set forth the traditional way, and to show how they are constructed among the Greeks. The square or oblong peristyle in a palaestra should be so formed that the circuit of it makes a walk of two stadia, a distance which the Greeks call the δἱανλος. Let three of its colonnades be single, but let the fourth, which is on the south side, be double, so that when there is bad weather accompanied by wind, the drops o
2 minute read
Read Chapter
Read Chapter
HARBOURS, BREAKWATERS, AND SHIPYARDS
HARBOURS, BREAKWATERS, AND SHIPYARDS
1. The subject of the usefulness of harbours is one which I must not omit, but must explain by what means ships are sheltered in them from storms. If their situation has natural advantages, with projecting capes or promontories which curve or return inwards by their natural conformation, such harbours are obviously of the greatest service. Round them, of course, colonnades or shipyards must be built, or passages from the colonnades to the business quarters, and towers must be set up on both side
4 minute read
Read Chapter
Read Chapter
INTRODUCTION
INTRODUCTION
1. It is related of the Socratic philosopher Aristippus that, being shipwrecked and cast ashore on the coast of the Rhodians, he observed geometrical figures drawn thereon, and cried out to his companions: "Let us be of good cheer, for I see the traces of man." With that he made for the city of Rhodes, and went straight to the gymnasium. There he fell to discussing philosophical subjects, and presents were bestowed upon him, so that he could not only fit himself out, but could also provide those
4 minute read
Read Chapter
Read Chapter
ON CLIMATE AS DETERMINING THE STYLE OF THE HOUSE
ON CLIMATE AS DETERMINING THE STYLE OF THE HOUSE
1. If our designs for private houses are to be correct, we must at the outset take note of the countries and climates in which they are built. One style of house seems appropriate to build in Egypt, another in Spain, a different kind in Pontus, one still different in Rome, and so on with lands and countries of other characteristics. This is because one part of the earth is directly under the sun's course, another is far away from it, while another lies midway between these two. Hence, as the pos
7 minute read
Read Chapter
Read Chapter
SYMMETRY, AND MODIFICATIONS IN IT TO SUIT THE SITE
SYMMETRY, AND MODIFICATIONS IN IT TO SUIT THE SITE
1. There is nothing to which an architect should devote more thought than to the exact proportions of his building with reference to a certain part selected as the standard. After the standard of symmetry has been determined, and the proportionate dimensions adjusted by calculations, it is next the part of wisdom to consider the nature of the site, or questions of use or beauty, and modify the plan by diminutions or additions in such a manner that these diminutions or additions in the symmetrica
2 minute read
Read Chapter
Read Chapter
PROPORTIONS OF THE PRINCIPAL ROOMS
PROPORTIONS OF THE PRINCIPAL ROOMS
1. There are five different styles of cavaedium, termed according to their construction as follows: Tuscan, Corinthian, tetrastyle, displuviate, and testudinate. In the Tuscan, the girders that cross the breadth of the atrium have crossbeams on them, and valleys sloping in and running from the angles of the walls to the angles formed by the beams, and the rainwater falls down along the rafters to the roof-opening (compluvium) in the middle. In the Corinthian, the girders and roof-opening are con
6 minute read
Read Chapter
Read Chapter
THE PROPER EXPOSURES OF THE DIFFERENT ROOMS
THE PROPER EXPOSURES OF THE DIFFERENT ROOMS
1. We shall next explain how the special purposes of different rooms require different exposures, suited to convenience and to the quarters of the sky. Winter dining rooms and bathrooms should have a southwestern exposure, for the reason that they need the evening light, and also because the setting sun, facing them in all its splendour but with abated heat, lends a gentler warmth to that quarter in the evening. Bedrooms and libraries ought to have an eastern exposure, because their purposes req
1 minute read
Read Chapter
Read Chapter
HOW THE ROOMS SHOULD BE SUITED TO THE STATION OF THE OWNER
HOW THE ROOMS SHOULD BE SUITED TO THE STATION OF THE OWNER
1. After settling the positions of the rooms with regard to the quarters of the sky, we must next consider the principles on which should be constructed those apartments in private houses which are meant for the householders themselves, and those which are to be shared in common with outsiders. The private rooms are those into which nobody has the right to enter without an invitation, such as bedrooms, dining rooms, bathrooms, and all others used for the like purposes. The common are those which
2 minute read
Read Chapter
Read Chapter
THE FARMHOUSE
THE FARMHOUSE
1. In the first place, inspect the country from the point of view of health, in accordance with what is written in my first book, on the building of cities, and let your farmhouses be situated accordingly. The Villa Rustica At Boscoreale Near Pompeii From Mau the villa rustica at boscoreale near pompeii A. Court. B. Kitchen. C-F. Baths. H. Stable. J. Toolroom. K, L, V, V. Bedrooms. N. Dining Room. M. Anteroom. O. Bakery. P. Room with two winepresses. Q. Corridor. B. Court for fermentation of win
4 minute read
Read Chapter
Read Chapter
THE GREEK HOUSE
THE GREEK HOUSE
1. The Greeks, having no use for atriums, do not build them, but make passage-ways for people entering from the front door, not very wide, with stables on one side and doorkeepers' rooms on the other, and shut off by doors at the inner end. Plan Of Vitruvius' Greek House According To Becker plan of vitruvius' greek house according to becker This place between the two doors is termed in Greek θυρωρειον. From it one enters the peristyle. This peristyle has colonnades on three sides, and on the sid
4 minute read
Read Chapter
Read Chapter
ON FOUNDATIONS AND SUBSTRUCTURES
ON FOUNDATIONS AND SUBSTRUCTURES
1. Houses which are set level with the ground will no doubt last to a great age, if their foundations are laid in the manner which we have explained in the earlier books, with regard to city walls and theatres. But if underground rooms and vaults are intended, their foundations ought to be thicker than the walls which are to be constructed in the upper part of the house, and the walls, piers, and columns of the latter should be set perpendicularly over the middle of the foundation walls below, s
5 minute read
Read Chapter
Read Chapter
INTRODUCTION
INTRODUCTION
1. It was a wise and useful provision of the ancients to transmit their thoughts to posterity by recording them in treatises, so that they should not be lost, but, being developed in succeeding generations through publication in books, should gradually attain in later times, to the highest refinement of learning. And so the ancients deserve no ordinary, but unending thanks, because they did not pass on in envious silence, but took care that their ideas of every kind should be transmitted to the
10 minute read
Read Chapter
Read Chapter
FLOORS
FLOORS
1. First I shall begin with the concrete flooring, which is the most important of the polished finishings, observing that great pains and the utmost precaution must be taken to ensure its durability. If this concrete flooring is to be laid level with the ground, let the soil be tested to see whether it is everywhere solid, and if it is, level it off and upon it lay the broken stone with its bedding. But if the floor is either wholly or partly filling, it should be rammed down hard with great car
4 minute read
Read Chapter
Read Chapter
THE SLAKING OF LIME FOR STUCCO
THE SLAKING OF LIME FOR STUCCO
1. Leaving the subject of floors, we must next treat of stucco work. This will be all right if the best lime, taken in lumps, is slaked a good while before it is to be used, so that if any lump has not been burned long enough in the kiln, it will be forced to throw off its heat during the long course of slaking in the water, and will thus be thoroughly burned to the same consistency. When it is taken not thoroughly slaked but fresh, it has little crude bits concealed in it, and so, when applied,
1 minute read
Read Chapter
Read Chapter
VAULTINGS AND STUCCO WORK
VAULTINGS AND STUCCO WORK
1. When vaulting is required, the procedure should be as follows. Set up horizontal furring strips at intervals of not more than two feet apart, using preferably cypress, as fir is soon spoiled by decay and by age. Arrange these strips so as to form a curve, and make them fast to the joists of the floor above or to the roof, if it is there, by nailing them with many iron nails to ties fixed at intervals. These ties should be made of a kind of wood that neither decay nor time nor dampness can spo
5 minute read
Read Chapter
Read Chapter
ON STUCCO WORK IN DAMP PLACES, AND ON THE DECORATION OF DINING ROOMS
ON STUCCO WORK IN DAMP PLACES, AND ON THE DECORATION OF DINING ROOMS
1. Having spoken of the method by which stucco work should be done in dry situations, I shall next explain how the polished finish is to be accomplished in places that are damp, in such a way that it can last without defects. First, in apartments which are level with the ground, apply a rendering coat of mortar, mixed with burnt brick instead of sand, to a height of about three feet above the floor, and then lay on the stucco so that those portions of it may not be injured by the dampness. But i
3 minute read
Read Chapter
Read Chapter
THE DECADENCE OF FRESCO PAINTING
THE DECADENCE OF FRESCO PAINTING
1. For the other apartments, that is, those intended to be used in Spring, Autumn, and Summer, as well as for atriums and peristyles, the ancients required realistic pictures of real things. A picture is, in fact, a representation of a thing which really exists or which can exist: for example, a man, a house, a ship, or anything else from whose definite and actual structure copies resembling it can be taken. Consequently the ancients who introduced polished finishings began by representing diffe
4 minute read
Read Chapter
Read Chapter
MARBLE FOR USE IN STUCCO
MARBLE FOR USE IN STUCCO
Marble is not produced everywhere of the same kind. In some places the lumps are found to contain transparent grains like salt, and this kind when crushed and ground is extremely serviceable in stucco work. In places where this is not found, the broken bits of marble or "chips," as they are called, which marble-workers throw down as they work, may be crushed and ground and used in stucco after being sifted. In still other places—for example, on the borderland of Magnesia and Ephesus—there are pl
34 minute read
Read Chapter
Read Chapter
NATURAL COLOURS
NATURAL COLOURS
As for colours, some are natural products found in fixed places, and dug up there, while others are artificial compounds of different substances treated and mixed in proper proportions so as to be equally serviceable. 1. We shall first set forth the natural colours that are dug up as such, like yellow ochre, which is termed ωχρα in Greek. This is found in many places, including Italy, but Attic, which was the best, is not now to be had because in the times when there were slaves in the Athenian
1 minute read
Read Chapter
Read Chapter
CINNABAR AND QUICKSILVER
CINNABAR AND QUICKSILVER
1. I shall now proceed to explain the nature of cinnabar. It is said that it was first found in the Cilbian country belonging to Ephesus, and both it and its properties are certainly very strange. First, before getting to the vermilion itself by methods of treatment, they dig out what is called the clod, an ore like iron, but rather of a reddish colour and covered with a red dust. During the digging it sheds, under the blows of the tools, tear after tear of quicksilver, which is at once gathered
2 minute read
Read Chapter
Read Chapter
CINNABAR (continued)
CINNABAR (continued)
1. I will now return to the preparation of vermilion. When the lumps of ore are dry, they are crushed in iron mortars, and repeatedly washed and heated until the impurities are gone, and the colours come. When the cinnabar has given up its quicksilver, and thus lost the natural virtues that it previously had, it becomes soft in quality and its powers are feeble. 2. Hence, though it keeps its colour perfectly when applied in the polished stucco finish of closed apartments, yet in open apartments,
2 minute read
Read Chapter
Read Chapter
ARTIFICIAL COLOURS. BLACK
ARTIFICIAL COLOURS. BLACK
1. I shall now pass to those substances which by artificial treatment are made to change their composition, and to take on the properties of colours; and first I shall treat of black, the use of which is indispensable in many works, in order that the fixed technical methods for the preparation of that compound may be known. 2. A place is built like a Laconicum, and nicely finished in marble, smoothly polished. In front of it, a small furnace is constructed with vents into the Laconicum, and with
1 minute read
Read Chapter
Read Chapter
BLUE. BURNT OCHRE
BLUE. BURNT OCHRE
1. Methods of making blue were first discovered in Alexandria, and afterwards Vestorius set up the making of it at Puzzuoli. The method of obtaining it from the substances of which it has been found to consist, is strange enough. Sand and the flowers of natron are brayed together so finely that the product is like meal, and copper is grated by means of coarse files over the mixture, like sawdust, to form a conglomerate. Then it is made into balls by rolling it in the hands and thus bound togethe
56 minute read
Read Chapter
Read Chapter
WHITE LEAD, VERDIGRIS, AND ARTIFICIAL SANDARACH
WHITE LEAD, VERDIGRIS, AND ARTIFICIAL SANDARACH
1. It is now in place to describe the preparation of white lead and of verdigris, which with us is called "aeruca." In Rhodes they put shavings in jars, pour vinegar over them, and lay pieces of lead on the shavings; then they cover the jars with lids to prevent evaporation. After a definite time they open them, and find that the pieces of lead have become white lead. In the same way they put in plates of copper and make verdigris, which is called "aeruca." 2. White lead on being heated in an ov
37 minute read
Read Chapter
Read Chapter
PURPLE
PURPLE
1. I shall now begin to speak of purple, which exceeds all the colours that have so far been mentioned both in costliness and in the superiority of its delightful effect. It is obtained from a marine shellfish, from which is made the purple dye, which is as wonderful to the careful observer as anything else in nature; for it has not the same shade in all the places where it is found, but is naturally qualified by the course of the sun. 2. That which is found in Pontus and Gaul is black, because
1 minute read
Read Chapter
Read Chapter
SUBSTITUTES FOR PURPLE, YELLOW OCHRE, MALACHITE GREEN, AND INDIGO
SUBSTITUTES FOR PURPLE, YELLOW OCHRE, MALACHITE GREEN, AND INDIGO
1. Purple colours are also manufactured by dyeing chalk with madder root and with hysginum. Other colours are made from flowers. Thus, when fresco painters wish to imitate Attic yellow ochre, they put dried violets into a vessel of water, and heat them over a fire; then, when the mixture is ready, they pour it onto a linen cloth, and squeeze it out with the hands, catching the water which is now coloured by the violets, in a mortar. Into this they pour chalk and bray it, obtaining the colour of
1 minute read
Read Chapter
Read Chapter
INTRODUCTION
INTRODUCTION
1. Among the Seven Sages, Thales of Miletus pronounced for water as the primordial element in all things; Heraclitus, for fire; the priests of the Magi, for water and fire; Euripides, a pupil of Anaxagoras, and called by the Athenians "the philosopher of the stage," for air and earth. Earth, he held, was impregnated by the rains of heaven and, thus conceiving, brought forth the young of mankind and of all the living creatures in the world; whatever is sprung from her goes back to her again when
2 minute read
Read Chapter
Read Chapter
HOW TO FIND WATER
HOW TO FIND WATER
1. This will be easier if there are open springs of running water. But if there are no springs which gush forth, we must search for them underground, and conduct them together. The following test should be applied. Before sunrise, lie down flat in the place where the search is to be made, and placing the chin on the earth and supporting it there, take a look out over the country. In this way the sight will not range higher than it ought, the chin being immovable, but will range over a definitely
4 minute read
Read Chapter
Read Chapter
RAINWATER
RAINWATER
1. Rainwater has, therefore, more wholesome qualities, because it is drawn from the lightest and most delicately pure parts of all the springs, and then, after being filtered through the agitated air, it is liquefied by storms and so returns to the earth. And rainfall is not abundant in the plains, but rather on the mountains or close to mountains, for the reason that the vapour which is set in motion at sunrise in the morning, leaves the earth, and drives the air before it through the heaven in
4 minute read
Read Chapter
Read Chapter
VARIOUS PROPERTIES OF DIFFERENT WATERS
VARIOUS PROPERTIES OF DIFFERENT WATERS
1. There are, however, some hot springs that supply water of the best taste, which is so delightful to drink that one does not think with regret of the Fountain of the Muses or the Marcian aqueduct. These hot springs are produced naturally, in the following manner. When fire is kindled down beneath in alum or asphalt or sulphur, it makes the earth immediately over it very hot, and emits a glowing heat to the parts still farther above it, so that if there are any springs of sweet water found in t
16 minute read
Read Chapter
Read Chapter
TESTS OF GOOD WATER
TESTS OF GOOD WATER
1. Springs should be tested and proved in advance in the following ways. If they run free and open, inspect and observe the physique of the people who dwell in the vicinity before beginning to conduct the water, and if their frames are strong, their complexions fresh, legs sound, and eyes clear, the springs deserve complete approval. If it is a spring just dug out, its water is excellent if it can be sprinkled into a Corinthian vase or into any other sort made of good bronze without leaving a sp
1 minute read
Read Chapter
Read Chapter
LEVELLING AND LEVELLING INSTRUMENTS
LEVELLING AND LEVELLING INSTRUMENTS
1. I shall now treat of the ways in which water should be conducted to dwellings and cities. First comes the method of taking the level. Levelling is done either with dioptrae, or with water levels, or with the chorobates, but it is done with greater accuracy by means of the chorobates, because dioptrae and levels are deceptive. The chorobates is a straightedge about twenty feet long. At the extremities it has legs, made exactly alike and jointed on perpendicularly to the extremities of the stra
1 minute read
Read Chapter
Read Chapter
AQUEDUCTS, WELLS, AND CISTERNS
AQUEDUCTS, WELLS, AND CISTERNS
1. There are three methods of conducting water, in channels through masonry conduits, or in lead pipes, or in pipes of baked clay. If in conduits, let the masonry be as solid as possible, and let the bed of the channel have a gradient of not less than a quarter of an inch for every hundred feet, and let the masonry structure be arched over, so that the sun may not strike the water at all. When it has reached the city, build a reservoir with a distribution tank in three compartments connected wit
8 minute read
Read Chapter
Read Chapter
INTRODUCTION
INTRODUCTION
1. The ancestors of the Greeks have appointed such great honours for the famous athletes who are victorious at the Olympian, Pythian, Isthmian, and Nemean games, that they are not only greeted with applause as they stand with palm and crown at the meeting itself, but even on returning to their several states in the triumph of victory, they ride into their cities and to their fathers' houses in four-horse chariots, and enjoy fixed revenues for life at the public expense. When I think of this, I a
9 minute read
Read Chapter
Read Chapter
THE ZODIAC AND THE PLANETS
THE ZODIAC AND THE PLANETS
1. It is due to the divine intelligence and is a very great wonder to all who reflect upon it, that the shadow of a gnomon at the equinox is of one length in Athens, of another in Alexandria, of another in Rome, and not the same at Piacenza, or at other places in the world. Hence drawings for dials are very different from one another, corresponding to differences of situation. This is because the length of the shadow at the equinox is used in constructing the figure of the analemma, in accordanc
9 minute read
Read Chapter
Read Chapter
THE PHASES OF THE MOON
THE PHASES OF THE MOON
1. According to the teaching of Berosus, who came from the state, or rather nation, of the Chaldees, and was the pioneer of Chaldean learning in Asia, the moon is a ball, one half luminous and the rest of a blue colour. When, in the course of her orbit, she has passed below the disc of the sun, she is attracted by his rays and great heat, and turns thither her luminous side, on account of the sympathy between light and light. Being thus summoned by the sun's disc and facing upward, her lower hal
3 minute read
Read Chapter
Read Chapter
THE COURSE OF THE SUN THROUGH THE TWELVE SIGNS
THE COURSE OF THE SUN THROUGH THE TWELVE SIGNS
1. The sun, after entering the sign Aries and passing through one eighth of it, determines the vernal equinox. On reaching the tail of Taurus and the constellation of the Pleiades, from which the front half of Taurus projects, he advances into a space greater than half the firmament, moving toward the north. From Taurus he enters Gemini at the time of the rising of the Pleiades, and, getting higher above the earth, he increases the length of the days. Next, coming from Gemini into Cancer, which
2 minute read
Read Chapter
Read Chapter
THE NORTHERN CONSTELLATIONS
THE NORTHERN CONSTELLATIONS
1. The Great Bear, called in Greek ἁρκτος or ἑλἱκη, has her Warden behind her. Near him is the Virgin, on whose right shoulder rests a very bright star which we call Harbinger of the Vintage, and the Greeks προτρυγητἡς. But Spica in that constellation is brighter. Opposite there is another star, coloured, between the knees of the Bear Warden, dedicated there under the name of Arcturus. 2. Opposite the head of the Bear, at an angle with the feet of the Twins, is the Charioteer, standing on the ti
3 minute read
Read Chapter
Read Chapter
THE SOUTHERN CONSTELLATIONS
THE SOUTHERN CONSTELLATIONS
1. First, under the He-Goat lies the Southern Fish, facing towards the tail of the Whale. The Censer is under the Scorpion's sting. The fore parts of the Centaur are next to the Balance and the Scorpion, and he holds in his hands the figure which astronomers call the Beast. Beneath the Virgin, Lion, and Crab is the twisted girdle formed by the Snake, extending over a whole line of stars, his snout raised near the Crab, supporting the Bowl with the middle of his body near the Lion, and bringing h
2 minute read
Read Chapter
Read Chapter
ASTROLOGY AND WEATHER PROGNOSTICS
ASTROLOGY AND WEATHER PROGNOSTICS
1. I have shown how the firmament, and the twelve signs with the constellations arranged to the north and south of them, fly round the earth, so that the matter may be clearly understood. For it is from this revolution of the firmament, from the course of the sun through the signs in the opposite direction, and from the shadows cast by equinoctial gnomons, that we find the figure of the analemma. 2. As for the branch of astronomy which concerns the influences of the twelve signs, the five stars,
1 minute read
Read Chapter
Read Chapter
THE ANALEMMA AND ITS APPLICATIONS
THE ANALEMMA AND ITS APPLICATIONS
1. In distinction from the subjects first mentioned, we must ourselves explain the principles which govern the shortening and lengthening of the day. When the sun is at the equinoxes, that is, passing through Aries or Libra, he makes the gnomon cast a shadow equal to eight ninths of its own length, in the latitude of Rome. In Athens, the shadow is equal to three fourths of the length of the gnomon; at Rhodes to five sevenths; at Tarentum, to nine elevenths; at Alexandria, to three fifths; and so
4 minute read
Read Chapter
Read Chapter
SUNDIALS AND WATER CLOCKS
SUNDIALS AND WATER CLOCKS
1. The semicircular form, hollowed out of a square block, and cut under to correspond to the polar altitude, is said to have been invented by Berosus the Chaldean; the Scaphe or Hemisphere, by Aristarchus of Samos, as well as the disc on a plane surface; the Arachne, by the astronomer Eudoxus or, as some say, by Apollonius; the Plinthium or Lacunar, like the one placed in the Circus Flaminius, by Scopinas of Syracuse; the προς τἁ ἱστοροὑμενα, by Parmenio; the προς παν κλιμα, by Theodosius and An
8 minute read
Read Chapter
Read Chapter
INTRODUCTION
INTRODUCTION
1. In the famous and important Greek city of Ephesus there is said to be an ancient ancestral law, the terms of which are severe, but its justice is not inequitable. When an architect accepts the charge of a public work, he has to promise what the cost of it will be. His estimate is handed to the magistrate, and his property is pledged as security until the work is done. When it is finished, if the outlay agrees with his statement, he is complimented by decrees and marks of honour. If no more th
2 minute read
Read Chapter
Read Chapter
MACHINES AND IMPLEMENTS
MACHINES AND IMPLEMENTS
1. A machine is a combination of timbers fastened together, chiefly efficacious in moving great weights. Such a machine is set in motion on scientific principles in circular rounds, which the Greeks call κυλικη κἱνησις. There is, however, a class intended for climbing, termed in Greek ἁκροβατικὁν, another worked by air, which with them is called πνευματικὁν, and a third for hoisting; this the Greeks named βαρουλκὁς. In the climbing class are machines so disposed that one can safely climb up high
3 minute read
Read Chapter
Read Chapter
HOISTING MACHINES
HOISTING MACHINES
1. First we shall treat of those machines which are of necessity made ready when temples and public buildings are to be constructed. Two timbers are provided, strong enough for the weight of the load. They are fastened together at the upper end by a bolt, then spread apart at the bottom, and so set up, being kept upright by ropes attached at the upper ends and fixed at intervals all round. At the top is fastened a block, which some call a "rechamus." In the block two sheaves are enclosed, turnin
9 minute read
Read Chapter
Read Chapter
THE ELEMENTS OF MOTION
THE ELEMENTS OF MOTION
1. I have briefly set forth what I thought necessary about the principles of hoisting machines. In them two different things, unlike each other, work together, as elements of their motion and power, to produce these effects. One of them is the right line, which the Greeks term εὑθεια; the other is the circle, which the Greeks call κυκλωτἡ; but in point of fact, neither rectilinear without circular motion, nor revolutions, without rectilinear motion, can accomplish the raising of loads. I will ex
5 minute read
Read Chapter
Read Chapter
ENGINES FOR RAISING WATER
ENGINES FOR RAISING WATER
1. I shall now explain the making of the different kinds of engines which have been invented for raising water, and will first speak of the tympanum. Although it does not lift the water high, it raises a great quantity very quickly. An axle is fashioned on a lathe or with the compasses, its ends are shod with iron hoops, and it carries round its middle a tympanum made of boards joined together. It rests on posts which have pieces of iron on them under the ends of the axle. In the interior of thi
1 minute read
Read Chapter
Read Chapter
WATER WHEELS AND WATER MILLS
WATER WHEELS AND WATER MILLS
1. Wheels on the principles that have been described above are also constructed in rivers. Round their faces floatboards are fixed, which, on being struck by the current of the river, make the wheel turn as they move, and thus, by raising the water in the boxes and bringing it to the top, they accomplish the necessary work through being turned by the mere impulse of the river, without any treading on the part of workmen. 2. Water mills are turned on the same principle. Everything is the same in
55 minute read
Read Chapter
Read Chapter
THE WATER SCREW
THE WATER SCREW
1. There is also the method of the screw, which raises a great quantity of water, but does not carry it as high as does the wheel. The method of constructing it is as follows. A beam is selected, the thickness of which in digits is equivalent to its length in feet. This is made perfectly round. The ends are to be divided off on their circumference with the compass into eight parts, by quadrants and octants, and let the lines be so placed that, if the beam is laid in a horizontal position, the li
3 minute read
Read Chapter
Read Chapter
THE PUMP OF CTESIBIUS
THE PUMP OF CTESIBIUS
1. Next I must tell about the machine of Ctesibius, which raises water to a height. It is made of bronze, and has at the bottom a pair of cylinders set a little way apart, and there is a pipe connected with each, the two running up, like the prongs of a fork, side by side to a vessel which is between the cylinders. In this vessel are valves, accurately fitting over the upper vents of the pipes, which stop up the ventholes, and keep what has been forced by pressure into the vessel from going down
1 minute read
Read Chapter
Read Chapter
THE WATER ORGAN
THE WATER ORGAN
1. With regard to water organs, however, I shall not fail with all possible brevity and precision to touch upon their principles, and to give a sufficient description of them. A wooden base is constructed, and on it is set an altar-shaped box made of bronze. Uprights, fastened together like ladders, are set up on the base, to the right and to the left (of the altar). They hold the bronze pump-cylinders, the moveable bottoms of which, carefully turned on a lathe, have iron elbows fastened to thei
3 minute read
Read Chapter
Read Chapter
THE HODOMETER
THE HODOMETER
1. The drift of our treatise now turns to a useful invention of the greatest ingenuity, transmitted by our predecessors, which enables us, while sitting in a carriage on the road or sailing by sea, to know how many miles of a journey we have accomplished. This will be possible as follows. Let the wheels of the carriage be each four feet in diameter, so that if a wheel has a mark made upon it, and begins to move forward from that mark in making its revolution on the surface of the road, it will h
4 minute read
Read Chapter
Read Chapter
CATAPULTS OR SCORPIONES
CATAPULTS OR SCORPIONES
1. I shall next explain the symmetrical principles on which scorpiones and ballistae may be constructed, inventions devised for defence against danger, and in the interest of self-preservation. The proportions of these engines are all computed from the given length of the arrow which the engine is intended to throw, and the size of the holes in the capitals, through which the twisted sinews that hold the arms are stretched, is one ninth of that length. 2. The height and breadth of the capital it
4 minute read
Read Chapter
Read Chapter
BALLISTAE
BALLISTAE
1. Ballistae are constructed on varying principles to produce an identical result. Some are worked by handspikes and windlasses, some by blocks and pulleys, others by capstans, others again by means of drums. No ballista, however, is made without regard to the given amount of weight of the stone which the engine is intended to throw. Hence their principle is not easy for everybody, but only for those who have knowledge of the geometrical principles employed in calculation and in multiplication.
5 minute read
Read Chapter
Read Chapter
THE STRINGING AND TUNING OF CATAPULTS
THE STRINGING AND TUNING OF CATAPULTS
1. Beams of very generous length are selected, and upon them are nailed socket-pieces in which windlasses are inserted. Midway along their length the beams are incised and cut away to form framings, and in these cuttings the capitals of the catapults are inserted, and prevented by wedges from moving when the stretching is going on. Then the bronze boxes are inserted into the capitals, and the little iron bolts, which the Greeks call ἑπιξυγἱδες, are put in their places in the boxes. 2. Next, the
1 minute read
Read Chapter
Read Chapter
SIEGE MACHINES
SIEGE MACHINES
1. It is related that the battering ram for sieges was originally invented as follows. The Carthaginians pitched their camp for the siege of Cadiz. They captured an outwork and attempted to destroy it. But having no iron implements for its destruction, they took a beam, and, raising it with their hands, and driving the end of it repeatedly against the top of the wall, they threw down the top courses of stones, and thus, step by step in regular order, they demolished the entire redoubt. 2. Afterw
4 minute read
Read Chapter
Read Chapter
THE TORTOISE
THE TORTOISE
1. A tortoise intended for the filling of ditches, and thereby to make it possible to reach the wall, is to be made as follows. Let a base, termed in Greek ἑσχἁρα, be constructed, with each of its sides twenty-one feet long, and with four crosspieces. Let these be held together by two others, two thirds of a foot thick and half a foot broad; let the crosspieces be about three feet and a half apart, and beneath and in the spaces between them set the trees, termed in Greek ἁμαξὁποδες, in which the
1 minute read
Read Chapter
Read Chapter
HEGETOR'S TORTOISE
HEGETOR'S TORTOISE
1. There is also another kind of tortoise, which has all the other details as described above except the rafters, but it has round it a parapet and battlements of boards, and eaves sloping downwards, and is covered with boards and hides firmly fastened in place. Above this let clay kneaded with hair be spread to such a thickness that fire cannot injure the machine. These machines can, if need be, have eight wheels, should it be necessary to modify them with reference to the nature of the ground.
3 minute read
Read Chapter
Read Chapter
MEASURES OF DEFENCE
MEASURES OF DEFENCE
1. With regard to scorpiones, catapults, and ballistae, likewise with regard to tortoises and towers, I have set forth, as seemed to me especially appropriate, both by whom they were invented and in what manner they should be constructed. But I have not considered it as necessary to describe ladders, cranes, and other things, the principles of which are simpler, for the soldiers usually construct these by themselves, nor can these very machines be useful in all places nor in the same way, since
6 minute read
Read Chapter
Read Chapter
SCAMILLI IMPARES (Book III, ch. 4)
SCAMILLI IMPARES (Book III, ch. 4)
No passage in Vitruvius has given rise to so much discussion or been the subject of such various interpretations as this phrase. The most reasonable explanation of its meaning seems to be that of Émile Burnouf, at one time Director of the French School at Athens, published in the Revue Générale del' Architecture for 1875, as a note to a brief article of his on the explanation of the curves of Greek Doric buildings. This explanation was accepted by Professor Morgan, who called my attention to it
3 minute read
Read Chapter
Read Chapter